Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35992377

RESUMO

Environmental toxicants like microcystins are known to adversely impact liver physiology and lead to the increased risk for abnormal liver function and even liver carcinoma. Chaga mushroom (Inonotus obliquus) is reported for various properties mainly antibacterial, antiallergic, anti-inflammatory, antioxidant, and anticancer properties. This study was aimed to assess the effect microcystin (MC-LR) on histopathology of liver in mice and a preventive measure by using aqueous extract of Inonotus obliquus (IOAE). Adult Balb/c mice were administered with MC-LR at 20 â€‹µg/kg body weight, per day, intraperitoneal (i.p.) for 4 weeks. IOAE was treated to one group of MC-LR mice at 200 â€‹mg/kg body weight, per oral, for 4 weeks. Histological staining for liver structural details and biochemical assays for functions were assessed. The results of the study showed that MC-LR drastically reduced the body weight of mice which were restored close to the range of control by IOAE treatment. MC-LR exposed mice showed 1.9, 1.7 and 2.2-fold increase in the levels of SGOT, SGPT and LDH which were restored by IOAE treatment as compared to control (one-fold). MC-LR exposed mice showed reduced level of GSH (19.83 â€‹± â€‹3.3 â€‹µM) which were regained by IOAE treatment (50.83 â€‹± â€‹3.0 â€‹µM). Similar observations were noted for catalase activity. Histological examinations show that MC-LR exposed degenerative changes in the liver sections which were restored by IOAE supplementation. The immunofluorescence analysis of caspase-3 counterstained with DAPI showed that MC-LR led to the increased expression of caspase-3 which were comparatively reduced by IOAE treatment. The cell viability decreased on increasing the concentration of MC-LR with 5% cell viability at concentration of 10 â€‹µg MC-LR/mL as that of control 100% Cell viability. The IC50 was calculated to be 3.6 â€‹µg/ml, indicating that MC-LR is chronic toxic to AML12 mouse hepatocytes. The molecular docking interaction of NF-κB-NIK with ergosterol peroxidase showed binding interaction between the two and showed the plausible molecular basis for the effects of IOAE in MC-LR induced liver injury. Collectively, this study revealed the deleterious effects of MC-LR on liver through generation of oxidative stress and activation of caspase-3, which were prevented by treatment with IOAE.

2.
Pharmacol Res ; 160: 105085, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32683037

RESUMO

Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.


Assuntos
Berberina/farmacologia , Suplementos Nutricionais , Hydrastis , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Berberina/efeitos adversos , Berberina/isolamento & purificação , Berberina/farmacocinética , Qualidade de Produtos para o Consumidor , Suplementos Nutricionais/efeitos adversos , Inocuidade dos Alimentos , Interações Ervas-Drogas , Humanos , Hydrastis/química , Hydrastis/toxicidade , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacocinética , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacocinética , Medição de Risco , Testes de Toxicidade
3.
Anticancer Agents Med Chem ; 18(13): 1815-1827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30277165

RESUMO

BACKGROUND: Essential oils (EOs) are aromatic, volatile and concentrated hydrophobic liquids extracted from plant material. EOs are also called as ethereal oils, volatile oils or aetherolea. EOs also play a crucial role in plant defence and signalling processes. They are mostly used in perfumes, cosmetics, soaps and other products for flavouring food, drinks, adding scents to incense and household cleaning products. EOs have a long medicinal history. METHODS: Reported research literature and online contents related to the use of EOs for their biochemical pharmacological applications in cancer prevention therapy were reviewed. The most relevant and updated citations were included in this review. RESULTS: This review elaborates the various types of EOs, their biochemical characteristics, and pharmacology. Medicinal benefits of essential oil products range from various skin treatments to different types of therapies for cancer and are dependent entirely on historical backgrounds of use of EOs for these properties. EOs have antimicrobial, anticancer, antioxidant, antiparasitical, insecticidal, anti-inflammatory, viricidal, fungicidal, wound healing, antihypertensive, analgesic properties and other medicinal properties. The efficiency of EOs in medical treatments and treatment of cancers are these days a subject of interest in most countries. CONCLUSION: This review elaborated the potentials of EOs in regulating cancer cell growth and have explored the probable EOs that can be used in drug development.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Bactérias/efeitos dos fármacos , Neoplasias/prevenção & controle , Óleos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Humanos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...