Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 115(2): 166-172, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37952226

RESUMO

The illegal poaching of lions for their body parts poses a severe threat to lion populations across Africa. Poaching accounts for 35% of all human-caused lion deaths, with 51% attributed to retaliatory killings following livestock predation. In nearly half of the retaliatory killings, lion body parts are removed, suggesting that high demand for lion body parts may fuel killings attributed to human-lion conflict. Trafficked items are often confiscated in transit or destination countries far from their country of origin. DNA from lion parts may in some cases be the only available means for examining their geographic origins. In this paper, we present the Lion Localizer, a full-stack software tool that houses a comprehensive database of lion mitochondrial DNA (mtDNA) sequences sourced from previously published studies. The database covers 146 localities from across the African continent and India, providing information on the potential provenance of seized lion body parts. Lion mtDNA sequences of 350 or 1,140 bp corresponding to the cytochrome b region can be generated from lion products and queried against the Lion Localizer database. Using the query sequence, the Lion Localizer generates a listing of exact or partial matches, which are displayed on an interactive map of Africa. This allows for the rapid identification of potential regions and localities where lions have been or are presently being targeted by poachers. By examining the potential provenance of lion samples, the Lion Localizer serves as a valuable resource in the fight against lion poaching. The software is available at https://lionlocalizer.org.


Assuntos
DNA Mitocondrial , Leões , Animais , Humanos , DNA Mitocondrial/genética , Leões/genética , África , Software
2.
Genes (Basel) ; 14(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36833353

RESUMO

Epizootic hemorrhagic disease (EHD) leads to high mortality in white-tailed deer (Odocoileus virginianus) and is caused by a double-stranded RNA (dsRNA) virus. Toll-like receptor 3 (TLR3) plays a role in host immune detection and response to dsRNA viruses. We, therefore, examined the role of genetic variation within the TLR3 gene in EHD among 84 Illinois wild white-tailed deer (26 EHD-positive deer and 58 EHD-negative controls). The entire coding region of the TLR3 gene was sequenced: 2715 base pairs encoding 904 amino acids. We identified 85 haplotypes with 77 single nucleotide polymorphisms (SNPs), of which 45 were synonymous mutations and 32 were non-synonymous. Two non-synonymous SNPs differed significantly in frequency between EHD-positive and EHD-negative deer. In the EHD-positive deer, phenylalanine was relatively less likely to be encoded at codon positions 59 and 116, whereas leucine and serine (respectively) were detected less frequently in EHD-negative deer. Both amino acid substitutions were predicted to impact protein structure or function. Understanding associations between TLR3 polymorphisms and EHD provides insights into the role of host genetics in outbreaks of EHD in deer, which may allow wildlife agencies to better understand the severity of outbreaks.


Assuntos
Cervos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Animais , Receptor 3 Toll-Like , Vírus da Doença Hemorrágica Epizoótica/genética
3.
PLoS One ; 17(11): e0274640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36449540

RESUMO

Chronic wasting disease (CWD) is a fatal, highly infectious prion disease that affects captive and wild cervids. Chronic wasting disease is the only known transmissible spongiform encephalopathy affecting free-ranging wildlife. In CWD-positive deer, some haplotypes of the prion protein gene PRNP are detected at lower frequencies as compared to CWD-negative deer, as are some variants of the prion protein PrP. Here, we examined wild, hunter-harvested CWD-negative white-tailed deer (Odocoileus virginianus) to determine whether there were geographical or temporal differences in the PRNP haplotypes, PRNP diplotypes, PrP proteoforms, and in the proportion of deer with at least one protective haplotype. We sampled 96-100 hunter-harvested deer per county at two time points in the Illinois counties of Jo Daviess, LaSalle, and Winnebago, chosen based on their geographic locations and known occurrence of CWD. The entire coding region of PRNP was sequenced, with haplotypes, diplotypes, and PrP proteoforms inferred. Across time, in Winnebago there was a significant increase in PrP proteoform F (p = 0.034), which is associated with a lower vulnerability to CWD. In every county, there was an increase over time in the frequency of deer carrying at least one protective haplotype to CWD, with a significant increase (p = 0.02) in the Jo Daviess County CWD infected region. We also found that primer combination was important as there was an 18.7% difference in the number of the deer identified as homozygous depending on primer usage. Current Illinois state management practices continue to remove CWD infected deer from locally infected areas helping to keep CWD prevalence low. Nonetheless, continued research on spatial and temporal changes in PRNP haplotypes, PrP proteoforms, and levels of deer vulnerability among Illinois deer will be important for the management of CWD within the state of Illinois and beyond.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/genética , Proteínas Priônicas/genética , Cervos/genética , Príons/genética , Illinois
4.
Front Genet ; 13: 1021004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712847

RESUMO

Non-invasive biological samples benefit studies that investigate rare, elusive, endangered, or dangerous species. Integrating genomic techniques that use non-invasive biological sampling with advances in computational approaches can benefit and inform wildlife conservation and management. Here, we used non-invasive fecal DNA samples to generate low- to medium-coverage genomes (e.g., >90% of the complete nuclear genome at six X-fold coverage) and metagenomic sequences, combining widely available and accessible DNA collection cards with commonly used DNA extraction and library building approaches. DNA preservation cards are easy to transport and can be stored non-refrigerated, avoiding cumbersome or costly sample methods. The genomic library construction and shotgun sequencing approach did not require enrichment or targeted DNA amplification. The utility and potential of the data generated was demonstrated through genome scale and metagenomic analyses of zoo and free-ranging African savanna elephants (Loxodonta africana). Fecal samples collected from free-ranging individuals contained an average of 12.41% (5.54-21.65%) endogenous elephant DNA. Clustering of these elephants with others from the same geographic region was demonstrated by a principal component analysis of genetic variation using nuclear genome-wide SNPs. Metagenomic analyses identified taxa that included Loxodonta, green plants, fungi, arthropods, bacteria, viruses and archaea, showcasing the utility of this approach for addressing complementary questions based on host-associated DNA, e.g., pathogen and parasite identification. The molecular and bioinformatic analyses presented here contributes towards the expansion and application of genomic techniques to conservation science and practice.

5.
Gan To Kagaku Ryoho ; 48(7): 963-965, 2021 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-34267037

RESUMO

The prognosis of patients with brain metastasis is very poor. Very few cases of combined treatment with nivolumab(240 mg/body, day 1, q2w, a programmed cell death-1[PD-1]inhibitor)and gamma knife radiosurgery(GKR)(27 Gy/3 Fr) for gastric cancer patients with brain metastasis have been reported. Here, we discuss the case of a 55-year-old man with HER2-positive poorly differentiated gastric adenocarcinoma with multiple bone and intra-abdominal lymph node metastases. After 25 courses of SOX(oxaliplatin 100 mg/m2, day 1, q3w plus S-1 120 mg/day, day 1-14, po, q3w)plus trastuzumab( 6 mg/kg, q3w)treatment, brain metastasis was detected. Subsequently, combined treatment with GKR and nivolumab(8 courses, anti-PD-1 monotherapy)was initiated. Both intra-abdominal and brain lesions decreased in response to this treatment, showing that combined therapy with nivolumab and GKR could be effective for treating gastric cancer patients with brain metastasis.


Assuntos
Adenocarcinoma , Neoplasias Encefálicas , Radiocirurgia , Neoplasias Gástricas , Adenocarcinoma/cirurgia , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Nivolumabe/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia
6.
BMC Res Notes ; 14(1): 119, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771210

RESUMO

OBJECTIVE: The Sumatran rhinoceros is critically endangered, with fewer than 100 individuals surviving across its current range. Accurate census estimates of the remaining populations are essential for development and implementation of conservation plans. In order to enable molecular censusing, we here develop microsatellite markers with amplicon sizes of short length, appropriate for non-invasive fecal sampling. RESULTS: Due to limited sample quantity and potential lack of genome-wide diversity, Illumina sequence reads were generated from two Sumatran rhinoceros samples. Genomic screening identified reads with short tandem repeats and loci that were polymorphic within the dataset. Twenty-nine novel polymorphic microsatellite markers were characterized (A = 2.4; HO = 0.30). These were sufficient to distinguish among individuals (PID < 0.0001), and to distinguish among siblings (PID(sib) < 0.0001). Among rhinos in Indonesia, almost all markers were established as polymorphic and effective for genotyping DNA from fecal samples. Notably, the markers amplified and displayed microsatellite polymorphisms using DNA extracted from 11 fecal samples collected non-invasively from wild Sumatran rhinoceros. These microsatellite markers provide an important resource for a census and genetic studies of wild Sumatran rhinos.


Assuntos
Repetições de Microssatélites , Perissodáctilos , Animais , Genoma , Genômica , Indonésia , Repetições de Microssatélites/genética , Perissodáctilos/genética
7.
J Hered ; 111(6): 564-572, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32945850

RESUMO

Chronic wasting disease (CWD) is a fatal, highly transmissible spongiform encephalopathy caused by an infectious prion protein. CWD is spreading across North American cervids. Studies of the prion protein gene (PRNP) in white-tailed deer (WTD; Odocoileus virginianus) have identified non-synonymous substitutions associated with reduced CWD frequency. Because CWD is spreading rapidly geographically, it may impact cervids of conservation concern. Here, we examined the genetic vulnerability to CWD of 2 subspecies of WTD: the endangered Florida Key deer (O. v. clavium) and the threatened Columbian WTD (O. v. leucurus). In Key deer (n = 48), we identified 3 haplotypes formed by 5 polymorphisms, of which 2 were non-synonymous. The polymorphism c.574G>A, unique to Key deer (29 of 96 chromosomes), encodes a non-synonymous substitution from valine to isoleucine at codon 192. In 91 of 96 chromosomes, Key deer carried c.286G>A (G96S), previously associated with substantially reduced susceptibility to CWD. Key deer may be less genetically susceptible to CWD than many mainland WTD populations. In Columbian WTD (n = 13), 2 haplotypes separated by one synonymous substitution (c.438C>T) were identified. All of the Columbian WTD carried alleles that in other mainland populations are associated with relatively high susceptibility to CWD. While larger sampling is needed, future management plans should consider that Columbian WTD are likely to be genetically more vulnerable to CWD than many other WTD populations. Finally, we suggest that genetic vulnerability to CWD be assessed by sequencing PRNP across other endangered cervids, both wild and in captive breeding facilities.


Assuntos
Cervos/genética , Polimorfismo Genético , Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Alelos , Animais , Espécies em Perigo de Extinção , Florida , Predisposição Genética para Doença , Haplótipos
8.
Prion ; 14(1): 214-225, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835598

RESUMO

Chronic wasting disease (CWD) is caused by prions, infectious proteinaceous particles, PrPCWD. We sequenced the PRNP gene of 2,899 white-tailed deer (WTD) from Illinois and southern Wisconsin, finding 38 haplotypes. Haplotypes A, B, D, E, G and 9 others encoded Q95G96S100N103A123Q226, designated 'PrP variant A.' Haplotype C and 4 other haplotypes encoded PrP 'variant C' (Q95S96S100N103A123Q226). Haplotype F and two other haplotypes encoded PrP 'variant F' (H95G96S100N103A123Q226). The association of CWD with encoded PrP variants was examined in 2,537 tested WTD from counties with CWD. Relative to PrP variant A, CWD susceptibility was lower in deer with PrP variant C (OR = 0.26, p < 0.001), and even lower in deer with PrP variant F (OR = 0.10, p < 0.0001). Susceptibility to CWD was highest in deer with both chromosomes encoding PrP variant A, lower with one copy encoding PrP variant A (OR = 0.25, p < 0.0001) and lowest in deer without PrP variant A (OR = 0.07, p < 0.0001). There appeared to be incomplete dominance for haplotypes encoding PrP variant C in reducing CWD susceptibility. Deer with both chromosomes encoding PrP variant F (FF) or one encoding PrP variant C and the other F (CF) were all CWD negative. Our results suggest that an increased population frequency of PrP variants C or F and a reduced frequency of PrP variant A may reduce the risk of CWD infection. Understanding the population and geographic distribution of PRNP polymorphisms may be a useful tool in CWD management.


Assuntos
Cervos/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Sequência de Aminoácidos , Animais , Proteínas Priônicas/química
9.
J Hered ; 110(7): 761-768, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31674643

RESUMO

Illegal hunting is a major threat to the elephants of Africa, with more elephants killed by poachers than die from natural causes. DNA from tusks has been used to infer the source populations for confiscated ivory, relying on nuclear genetic markers. However, mitochondrial DNA (mtDNA) sequences can also provide information on the geographic origins of elephants due to female elephant philopatry. Here, we introduce the Loxodonta Localizer (LL; www.loxodontalocalizer.org), an interactive software tool that uses a database of mtDNA sequences compiled from previously published studies to provide information on the potential provenance of confiscated ivory. A 316 bp control region sequence, which can be readily generated from DNA extracted from ivory, is used as a query. The software generates a listing of haplotypes reported among 1917 African elephants in 24 range countries, sorted in order of similarity to the query sequence. The African locations from which haplotype sequences have been previously reported are shown on a map. We demonstrate examples of haplotypes reported from only a single locality or country, examine the utility of the program in identifying elephants from countries with varying degrees of sampling, and analyze batches of confiscated ivory. The LL allows for the source of confiscated ivory to be assessed within days, using widely available molecular methods that do not depend on a particular platform or laboratory. The program enables identification of potential regions or localities from which elephants are being poached, with capacity for rapid identification of populations newly or consistently targeted by poachers.


Assuntos
DNA Mitocondrial , Elefantes/genética , Software , Navegador , África , Animais , Animais Selvagens , Biologia Computacional/métodos , Conservação dos Recursos Naturais , Elefantes/classificação , Genética Forense , Marcadores Genéticos , Haplótipos , Dinâmica Populacional
10.
Proc Natl Acad Sci U S A ; 115(34): 8609-8614, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082403

RESUMO

Endogenous retroviruses (ERVs) are proviral sequences that result from colonization of the host germ line by exogenous retroviruses. The majority of ERVs represent defective retroviral copies. However, for most ERVs, endogenization occurred millions of years ago, obscuring the stages by which ERVs become defective and the changes in both virus and host important to the process. The koala retrovirus, KoRV, only recently began invading the germ line of the koala (Phascolarctos cinereus), permitting analysis of retroviral endogenization on a prospective basis. Here, we report that recombination with host genomic elements disrupts retroviruses during the earliest stages of germ-line invasion. One type of recombinant, designated recKoRV1, was formed by recombination of KoRV with an older degraded retroelement. Many genomic copies of recKoRV1 were detected across koalas. The prevalence of recKoRV1 was higher in northern than in southern Australian koalas, as is the case for KoRV, with differences in recKoRV1 prevalence, but not KoRV prevalence, between inland and coastal New South Wales. At least 15 additional different recombination events between KoRV and the older endogenous retroelement generated distinct recKoRVs with different geographic distributions. All of the identified recombinant viruses appear to have arisen independently and have highly disrupted ORFs, which suggests that recombination with existing degraded endogenous retroelements may be a means by which replication-competent ERVs that enter the germ line are degraded.


Assuntos
Retrovirus Endógenos/genética , Phascolarctidae/genética , Recombinação Genética , Animais , Feminino , Masculino , New South Wales
11.
Prion ; 12(3-4): 204-215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30041562

RESUMO

Managing and controlling the spread of diseases in wild animal populations is challenging, especially for social and mobile species. Effective management benefits from information about disease susceptibility, allowing limited resources to be focused on areas or populations with a higher risk of infection. Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that affects cervids, was detected in Colorado in the late 1960s. CWD was detected in Illinois and Wisconsin in 2002 and has since spread through many counties. Specific nucleotide variations in the prion protein gene (PRNP) sequence have been associated with reduced susceptibility to CWD in white-tailed deer. Though genetic resistance is incomplete, the frequency of deer possessing these mutations in a population is an important factor in disease spread (i.e. herd immunity). In this study we sequenced 625 bp of the PRNP gene from a sampling of 2433 deer from Illinois and Wisconsin. In north-central Illinois where CWD was first detected, counties had a low frequency of protective haplotypes (frequency <0.20); whereas in northwestern Illinois counties, where CWD cases have only more recently been detected, the frequency of protective haplotypes (frequency >0.30) was much higher (p < 0.05). Protective haplotype frequencies varied significantly among infected and uninfected geographic areas. The frequency of protective PRNP haplotypes may contribute to population level susceptibility and may shape the way CWD has spread through Illinois. Analysis of PRNP haplotype distribution could be a useful tool to assess CWD risk and allocate resources to contain and reduce the spread of infection.


Assuntos
Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Animais , Cervos , Haplótipos/genética
12.
Ecol Evol ; 8(10): 4919-4931, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876070

RESUMO

The past processes that have shaped geographic patterns of genetic diversity may be difficult to infer from current patterns. However, in species with sex differences in dispersal, differing phylogeographic patterns between mitochondrial (mt) and nuclear (nu) DNA may provide contrasting insights into past events. Forest elephants (Loxodonta cyclotis) were impacted by climate and habitat change during the Pleistocene, which likely shaped phylogeographic patterns in mitochondrial (mt) DNA that have persisted due to limited female dispersal. By contrast, the nuclear (nu) DNA phylogeography of forest elephants in Central Africa has not been determined. We therefore examined the population structure of Central African forest elephants by genotyping 94 individuals from six localities at 21 microsatellite loci. Between forest elephants in western and eastern Congolian forests, there was only modest genetic differentiation, a pattern highly discordant with that of mtDNA. Nuclear genetic patterns are consistent with isolation by distance. Alternatively, male-mediated gene flow may have reduced the previous regional differentiation in Central Africa suggested by mtDNA patterns, which likely reflect forest fragmentation during the Pleistocene. In species like elephants, male-mediated gene flow erases the nuclear genetic signatures of past climate and habitat changes, but these continue to persist as patterns in mtDNA because females do not disperse. Conservation implications of these results are discussed.

13.
Microbiol Mol Biol Rev ; 82(1)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29237726

RESUMO

Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.


Assuntos
Retrovirus Endógenos/classificação , Evolução Molecular , Gammaretrovirus/classificação , Infecções por Retroviridae/transmissão , Infecções Tumorais por Vírus/transmissão , Zoonoses/transmissão , Animais , Reservatórios de Doenças , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Phascolarctidae/virologia , Filogenia , Filogeografia , Ratos , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/virologia , Zoonoses/virologia
14.
Elife ; 62017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585920

RESUMO

The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods ~120 and ~244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision.


Assuntos
Elefantes/genética , Evolução Molecular , Fósseis , Genômica , Animais , DNA Mitocondrial/genética , Genoma Mitocondrial , Filogenia , Análise de Sequência de DNA
15.
Anim Biotechnol ; 28(2): 112-119, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-27791476

RESUMO

Toll-like receptor 2 (TLR2) plays an important role in recognition by the innate immune system of Gram-positive bacteria. As Gram-positive bacteria cause mastitis, we examined variations in the region of the TLR2 gene that codes for the extracellular domain. Samples of forty goats from a single dairy herd were collected, half with low SCC (≤200,000 cells/mL), and half with higher SCC. Two synonymous single nucleotide polymorphisms (SNPs) were identified: 840G > A and 1083A > G. One nonsynonymous SNP 739G > A was identified. This coded for valine or isoleucine, which have similar physiochemical properties, and was not in a region coding for a known functional domain. Surprisingly, the least square mean SCC of the heterozygous goats (146,220) was significantly lower than the SCC of homozygous GG goats (537,700; p = 0.004), although these two groups were similar in days in milk (p = 0.984), and there was no significant difference by breed (p = 0.941). Because factors other than mastitis can affect SCC and our sample sizes were limited, additional studies are needed to corroborate an association between TLR2 genotype and SCC or mastitis in goats.


Assuntos
Contagem de Células/veterinária , Cabras/genética , Cabras/metabolismo , Leite/citologia , Leite/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Receptor 2 Toll-Like/genética , Animais , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença/genética
16.
Ecol Evol ; 6(17): 6189-201, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27648236

RESUMO

Locally isolated populations in marginal habitats may be genetically distinctive and of heightened conservation concern. Elephants inhabiting the Namib Desert have been reported to show distinctive behavioral and phenotypic adaptations in that severely arid environment. The genetic distinctiveness of Namibian desert elephants relative to other African savanna elephant (Loxodonta africana) populations has not been established. To investigate the genetic structure of elephants in Namibia, we determined the mitochondrial (mt) DNA control region sequences and genotyped 17 microsatellite loci in desert elephants (n = 8) from the Hoanib River catchment and the Hoarusib River catchment. We compared these to the genotypes of elephants (n = 77) from other localities in Namibia. The mtDNA haplotype sequences and frequencies among desert elephants were similar to those of elephants in Etosha National Park, the Huab River catchment, the Ugab River catchment, and central Kunene, although the geographically distant Caprivi Strip had different mtDNA haplotypes. Likewise, analysis of the microsatellite genotypes of desert-dwelling elephants revealed that they were not genetically distinctive from Etosha elephants, and there was no evidence for isolation by distance across the Etosha region. These results, and a review of the historical record, suggest that a high learning capacity and long-distance migrations allowed Namibian elephants to regularly shift their ranges to survive in the face of high variability in climate and in hunting pressure.

17.
J Hered ; 107(7): 573-580, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27515769

RESUMO

The koala (Phascolarctos cinereus) suffered population declines and local extirpation due to hunting in the early 20th century, especially in southern Australia. Koalas were subsequently reintroduced to the Brisbane Ranges (BR) and Stony Rises (SR) by translocating individuals from a population on French Island descended from a small number of founders. To examine genetic diversity and north-south differentiation, we genotyped 13 microsatellite markers in 46 wild koalas from the BR and SR, and 27 Queensland koalas kept at the US zoos. The Queensland koalas displayed much higher heterozygosity (H O = 0.73) than the 2 southern Australian koala populations examined: H O = 0.49 in the BR, whereas H O = 0.41 in the SR. This is consistent with the historical accounts of bottlenecks and founder events affecting the southern populations and contrasts with reports of high genetic diversity in some southern populations. The 2 southern Australian koala populations were genetically similar (F ST = 0.018, P = 0.052). By contrast, northern and southern Australian koalas were highly differentiated (F ST = 0.27, P < 0.001), thereby suggesting that geographic structuring should be considered in the conservation management of koalas. Sequencing of 648bp of the mtDNA control region in Queensland koalas found 8 distinct haplotypes, one of which had not been previously detected among koalas. Queensland koalas displayed high mitochondrial haplotype diversity (H = 0.753) and nucleotide diversity (π = 0.0072), indicating along with the microsatellite data that North American zoos have maintained high levels of genetic diversity among their Queensland koalas.


Assuntos
Variação Genética , Genética Populacional , Phascolarctidae/classificação , Phascolarctidae/genética , Animais , DNA Mitocondrial , Genótipo , Haplótipos , Repetições de Microssatélites , Filogenia , Queensland , Análise de Sequência de DNA , Vitória
18.
BMC Res Notes ; 9: 364, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456228

RESUMO

BACKGROUND: African elephants comprise two species, the savanna elephant (Loxodonta africana) and the forest elephant (L. cyclotis), which are distinct morphologically and genetically. Forest elephants are seriously threatened by poaching for meat and ivory, and by habitat destruction. However, microsatellite markers have thus far been developed only in African savanna elephants and Asian elephants, Elephas maximus. The application of microsatellite markers across deeply divergent lineages may produce irregular patterns such as large indels or null alleles. Thus we developed novel microsatellite markers using DNA from two African forest elephants. FINDINGS: One hundred microsatellite loci were identified in next generation shotgun sequences from two African forest elephants, of which 53 were considered suitable for testing. Twenty-three microsatellite markers successfully amplified elephant DNA without amplifying human DNA; these were further characterized in 15 individuals from Lope National Park, Gabon. Three of the markers were monomorphic and four of them carried only two alleles. The remaining sixteen polymorphic loci carried from 3 to 8 alleles, with observed heterozygosity ranging from 0.27 to 0.87, expected heterozygosity from 0.40 to 0.86, and the Shannon diversity index from 0.73 to 1.86. Linkage disequilibrium was not detected between loci, and no locus deviated from Hardy-Weinberg equilibrium. CONCLUSIONS: The markers developed in this study will be useful for genetic analyses of the African forest elephant and contribute to their conservation and management.


Assuntos
Conservação dos Recursos Naturais , Elefantes/genética , Marcadores Genéticos , Genoma , Repetições de Microssatélites , Alelos , Animais , Ecossistema , Elefantes/classificação , Florestas , Gabão , Loci Gênicos , Genótipo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Parques Recreativos
19.
J Virol ; 90(18): 8169-80, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27384662

RESUMO

UNLABELLED: Gibbon ape leukemia virus (GALV) and koala retrovirus (KoRV) most likely originated from a cross-species transmission of an ancestral retrovirus into koalas and gibbons via one or more intermediate as-yet-unknown hosts. A virus highly similar to GALV has been identified in an Australian native rodent (Melomys burtoni) after extensive screening of Australian wildlife. GALV-like viruses have also been discovered in several Southeast Asian species, although screening has not been extensive and viruses discovered to date are only distantly related to GALV. We therefore screened 26 Southeast Asian rodent species for KoRV- and GALV-like sequences, using hybridization capture and high-throughput sequencing, in the attempt to identify potential GALV and KoRV hosts. Only the individuals belonging to a newly discovered subspecies of Melomys burtoni from Indonesia were positive, yielding an endogenous provirus very closely related to a strain of GALV. The sequence of the critical receptor domain for GALV infection in the Indonesian M. burtoni subsp. was consistent with the susceptibility of the species to GALV infection. The second record of a GALV in M. burtoni provides further evidence that M. burtoni, and potentially other lineages within the widespread subfamily Murinae, may play a role in the spread of GALV-like viruses. The discovery of a GALV in the most western part of the Australo-Papuan distribution of M. burtoni, specifically in a transitional zone between Asia and Australia (Wallacea), may be relevant to the cross-species transmission to gibbons in Southeast Asia and broadens the known distribution of GALVs in wild rodents. IMPORTANCE: Gibbon ape leukemia virus (GALV) and the koala retrovirus (KoRV) are very closely related, yet their hosts neither are closely related nor overlap geographically. Direct cross-species infection between koalas and gibbons is unlikely. Therefore, GALV and KoRV may have arisen via a cross-species transfer from an intermediate host whose range overlaps those of both gibbons and koalas. Using hybridization capture and high-throughput sequencing, we have screened a wide range of rodent candidate hosts from Southeast Asia for KoRV- and GALV-like sequences. Only a Melomys burtoni subspecies from Wallacea (Indonesia) was positive for GALV. We report the genome sequence of this newly identified GALV, the critical domain for infection of its potential cellular receptor, and its phylogenetic relationships with the other previously characterized GALVs. We hypothesize that Melomys burtoni, and potentially related lineages with an Australo-Papuan distribution, may have played a key role in cross-species transmission to other taxa.


Assuntos
Vírus da Leucemia do Macaco Gibão/isolamento & purificação , Murinae/virologia , Infecções por Retroviridae/veterinária , Doenças dos Roedores/virologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Indonésia , Vírus da Leucemia do Macaco Gibão/genética , Hibridização de Ácido Nucleico , Provírus/genética , Provírus/isolamento & purificação , Infecções por Retroviridae/virologia , Análise de Sequência de DNA
20.
PeerJ ; 4: e1847, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069793

RESUMO

Background. Retroviral integration into the host germline results in permanent viral colonization of vertebrate genomes. The koala retrovirus (KoRV) is currently invading the germline of the koala (Phascolarctos cinereus) and provides a unique opportunity for studying retroviral endogenization. Previous analysis of KoRV integration patterns in modern koalas demonstrate that they share integration sites primarily if they are related, indicating that the process is currently driven by vertical transmission rather than infection. However, due to methodological challenges, KoRV integrations have not been comprehensively characterized. Results. To overcome these challenges, we applied and compared three target enrichment techniques coupled with next generation sequencing (NGS) and a newly customized sequence-clustering based computational pipeline to determine the integration sites for 10 museum Queensland and New South Wales (NSW) koala samples collected between the 1870s and late 1980s. A secondary aim of this study sought to identify common integration sites across modern and historical specimens by comparing our dataset to previously published studies. Several million sequences were processed, and the KoRV integration sites in each koala were characterized. Conclusions. Although the three enrichment methods each exhibited bias in integration site retrieval, a combination of two methods, Primer Extension Capture and hybridization capture is recommended for future studies on historical samples. Moreover, identification of integration sites shows that the proportion of integration sites shared between any two koalas is quite small.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...