Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404076, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934929

RESUMO

A ternary catalyst comprising Iridium (Ir) single-atoms (SA)s decorated on the Co-oxide supported palladium (Pd) nanoparticles (denoted as CPI-SA) is developed in this work. The CPI-SA with 1 wt.% of Ir exhibits unprecedented high mass activity (MA) of 7173 and 770 mA mgIr -1, respectively, at 0.85 and 0.90 V versus RHE in alkaline ORR (0.1 m KOH), outperforming the commercial Johnson Matthey Pt catalyst (J.M.-Pt/C; 20 wt.% Pt) by 107-folds. More importantly, the high structural reliability of the Ir single-atoms endows the CPI-SA with outstanding durability, where it shows progressively increasing MA of 13 342 and 1372 mA mgIr -1, respectively, at 0.85 and 0.90 V versus RHE up to 69 000 cycles (3 months) in the accelerated degradation test (ADT). Evidence from the in situ partial fluorescence yield X-ray absorption spectroscopy (PFY-XAS) and the electrochemical analysis indicate that the Ir single-atoms and adjacent Pd domains synergistically promote the O2 splitting and subsequent desorption of hydroxide ions (OH-), respectively. Whereas the Co-atoms underneath serve as electron injectors to boost the ORR activity of the Ir single-atoms. Besides, a progressive and sharp drop in the ORR performance is observed when Ir-clusters and Ir nanoparticles are decorated on the Co-oxide-supported Pd nanoparticles.

2.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847362

RESUMO

Prussian blue analogue (PBA)/metal-organic frameworks (MOFs) are multifunctional precursors for the synthesis of metal/metal compounds, carbon, and their derived composites (P/MDCs) in chemical, medical, energy, and other applications. P/MDCs combine the advantages of both the high specific surface area of PBA/MOF and the electronic conductivity of metal compound/carbon. Although the calcination under different atmospheres has been extensively studied, the transformation mechanism of PBA/MOF under hydrothermal conditions remains unclear. The qualitative preparation of P/MDCs in hydrothermal conditions remains a challenge. Here, we select PBA to construct a machine-learning model and measure its hydrothermal phase diagram. The architecture-activity relationship of substances among nine parameters was analyzed for the hydrothermal phase transformation of PBA. Excitingly, we established a universal qualitative model to accurately fabricate 31 PBA derivates. Additionally, we performed three-dimensional reconstructed transmission electron microscopy, X-ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, in situ X-ray powder diffraction, and theoretical calculation to analyze the advantages of hydrothermal derivatives in the oxygen evolution reaction and clarify their reaction mechanisms. We uncover the unified principles of the hydrothermal phase transformation of PBA, and we expect to guide the design for a wide range of composites.

3.
Inorg Chem ; 63(5): 2553-2561, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38253512

RESUMO

The structural and superconducting properties of the Bi-based compound Bi2Pd3Se2 were investigated over a wide pressure range. The prepared Bi2Pd3Se2 sample was a superconductor with a superconducting transition temperature, Tc, of approximately 3.0 K, which differed from a previous report (Tc of less than 1.0 K). At ambient pressure, the powder X-ray diffraction (XRD) pattern of the Bi2Pd3Se2 sample was consistent with that previously reported for Bi2Pd3Se2. The Rietveld method was used to refine the crystal structure, which had a space group of C2/m (No. 12), as reported previously. This compound showed no clear anomaly due to the charge-density-wave (CDW) transition, as seen from the temperature dependence of magnetic susceptibility. However, the temperature dependence of electrical resistivity indicated a clear anomaly, presumably because of the CDW transition in the low-pressure range; the CDW transition temperature was approximately 230 K. The XRD patterns of the Bi2Pd3Se2 sample were measured at 0.160-22.7 GPa, and the patterns were well analyzed by both the Le Bail and Rietveld refinement methods, showing no structural phase transitions in the above pressure range. The pressure dependence of Tc of Bi2Pd3Se2 was recorded based on the temperature dependence of the electrical resistance, which showed an almost constant Tc at 0-13.7 GPa, and the Tc-pressure (p) behavior was fully discussed.

4.
Inorg Chem ; 62(48): 19466-19473, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37981825

RESUMO

A graphite-like material boron carbide (BCx) was synthesized under various heat treatment conditions and extensively characterized. First, we synthesized the BCx precursor phase by a single-step reaction using a mixed solution of BBr3 and C6H6. We confirmed that the precursor phase had a graphite-like structure with B-C chemical bonds, but its crystallinity was poor. To improve their crystallinity, we annealed the precursor sample at high temperature using a high-frequency furnace and determined the annealing condition. We also investigated the magnetic properties of BCx. The high-temperature annealing for the precursor phase yields the highest Pauli paramagnetic susceptibility χPauli, indicating the highest density of states at the Fermi level. Accordingly, the high-temperature treatment for the precursor phase is significant to improve its crystallinity and physical properties. In addition, we synthesized a Ti-intercalated material TiBC by using the same procedure as that for making the BCx precursor phase. The crystal structure can be indexed by the AlB2 structure, indicating that Ti atoms are intercalated between the BC layers. The χPauli value of TiBC is obtained to be 1 order of magnitude smaller than that of BCx, suggesting the compensation of hole carriers by electron doping through Ti intercalation into the BCx system.

5.
Inorg Chem ; 62(19): 7453-7460, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37141088

RESUMO

The structural and superconducting properties of a Bi-based compound, Bi2Rh3Se2, are investigated over a wide pressure range. Bi2Rh3Se2 is a superconductor with a superconducting transition temperature, Tc, of 0.7 K. This compound is in a charge-density-wave (CDW) state below 240 K, which implies the coexistence of superconducting and CDW states at low temperatures. Here, the superconducting properties of Bi2Rh3Se2 are studied from the perspective of the temperature dependence of electrical resistance (R) at high pressures (p's). The pressure dependence of Tc of Bi2Rh3Se2 shows a slow increase in Tc at 0-15.5 GPa, and the Tc slowly decreases with pressure above 15.5 GPa, which is markedly different from that of normal superconductors because the value of Tc should simply decrease owing to the decrease in density of states (DOS) on the Fermi level, N(εF), driven by a simple shrinkage of the lattice under pressure. To ascertain the origin of such a dome-like Tc-p behavior, the crystal structure of Bi2Rh3Se2 was explored over a wide pressure range of 0-20 GPa on the basis of powder X-ray diffraction; no structural phase transitions or simple shrinkage of the lattice was observed. This result implies that the increase in Tc against pressure cannot simply be explained from a structural point of view. In other words, a direct relation between superconductivity and crystal structure was not found. On the other hand, the CDW transition became ambiguous at pressures higher than 3.8 GPa, suggesting that the Tc had been suppressed by the CDW transition in a low pressure range. Thus, the findings suggest that for Bi2Rh3Se2, Tc is enhanced through the suppression of CDW transition, which may be reasonable because the CDW-ordered state restrains the charge fluctuation to weaken the electron-phonon coupling and opens the gap to decrease the density of states on the Fermi level. The obtained dome-like Tc-p behavior indicates the possibility of Bi2Rh3Se2 being an exotic superconductor.

6.
ACS Appl Mater Interfaces ; 15(12): 16177-16188, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939741

RESUMO

Fuel cells are considered potential energy conversion devices for utopia; nevertheless, finding a highly efficacious and economical electrocatalyst for the oxygen reduction reaction (ORR) is of great interest. By keeping this in view, we have proposed a novel design of a trimetallic nanocatalyst (NC) comprising atomic Pt clusters at the heterogeneous Ni(OH)2-to-Pd interface (denoted NPP-70). The as-prepared material surpasses the commercial J.M.-Pt/C (20 wt %) catalyst by ∼ 166 and ∼19 times with exceptionally high specific and mass activities of 16.11 mA cm-2 and 484.8 mA mgPt-1 at 0.90 V versus reversible hydrogen electrode (RHE) in alkaline ORR (0.1 M KOH), respectively. On top of that, NPP-70 NC retains nearly 100% performance after 10k accelerated durability test (ADT) cycles. The results of physical characterization and electrochemical analysis confirm that atomic-scale Pt clusters induce strong lattice strain (compressive) at the Ni(OH)2-to-Pd interface, which triggers the electron relocation from Ni to Pt atoms. Such charge localization is vital for O2 splitting on surface Pt atoms, followed by the relocation of OH- ions from the Pd surface. Besides, a sharp fall down in ORR performance (mass activity is 37 mA mgPt-1 at 0.90 V versus RHE) is observed when the Pt clusters are decorated on the surface of NiOx and Pd (denoted NPP-RT). In situ partial fluorescence yield mode X-ray absorption spectroscopy (PFY-XAS) was employed to reveal the ORR pathways on both configurations. The obtained results demonstrate that interface engineering can be a potential approach to boost the electrocatalytic activity of metal hydroxide/oxide-supported Pd nanoparticles and in turn allow Pd to be a promising alternative for commercial Pt catalysts.

7.
Adv Sci (Weinh) ; 10(7): e2206096, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36594619

RESUMO

The construction of strong interactions and synergistic effects between small metal clusters and supports offers a great opportunity to achieve high-performance and cost-effective heterogeneous catalysis, however, studies on its applications in electrocatalysis are still insufficient. Herein, it is reported that W18 O49 nanowires supported sub-nanometric Ru clusters (denoted as Ru SNC/W18 O49 NWs) constitute an efficient bifunctional electrocatalyst for hydrogen evolution/oxidation reactions (HER and HOR) under acidic condition. Microstructural analyses, X-ray absorption spectroscopy, and density functional theory (DFT) calculations reveal that the Ru SNCs with an average RuRu coordination number of 4.9 are anchored to the W18 O49 NWs via RuOW bonds at the interface. The strong metal-support interaction leads to the electron-deficient state of Ru SNCs, which enables a modulated RuH strength. Furthermore, the unique proton transport capability of the W18 O49 also provides a potential migration channel for the reaction intermediates. These components collectively enable the remarkable performance of Ru SNC/W18 O49 NWs for hydrogen electrocatalysis with 2.5 times of exchange current density than that of carbon-supported Ru nanoparticles, and even rival the state-of-the-art Pt catalyst. This work provides a new prospect for the development of supported sub-nanometric metal clusters for efficient electrocatalysis.

8.
Inorg Chem ; 61(50): 20538-20546, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36480275

RESUMO

The crystal structure and superconducting properties of a new type of titanium-pnictide superconductor, BaTi2(Sb1-yBiy)2O (y = 0.2, 0.5, and 0.8), are comprehensively investigated over a wide pressure range to elucidate the effect of substituting Bi for Sb on the superconducting behavior. The behavior of superconducting properties under pressure changes drastically with y, as expected from the double-dome Tc-y phase diagram obtained at ambient pressure. In this study, three BaTi2(Sb1-yBiy)2O samples (y = 0.2, 0.5, and 0.8) are considered, which correspond to the first superconducting dome, nonsuperconducting part, and second superconducting dome, respectively, in the Tc-y phase diagram. The crystal of BaTi2(Sb1-yBiy)2O with y = 0.2 shows a clear collapse transition, i.e., a drastic shrinkage of the lattice constant c at ca. 5 GPa. Strictly speaking, the collapsed crystal phase coexists with the noncollapsed phase above 5 GPa. On the other hand, BaTi2(Sb1-yBiy)2O with y = 0.8 shows a continuous change in the crystal lattice with pressure, i.e., no collapse transitions. The pressure dependence of Tc for BaTi2(Sb1-yBiy)2O with y = 0.2 shows a drastic increase in Tc at approximately 5 GPa, where the collapse transition occurs, indicating a clear pressure-induced superconducting phase transition related to the collapse transition. The value of Tc for BaTi2(Sb1-yBiy)2O with y = 0.8 increases slightly up to ∼2 GPa and is almost constant at 2-13 GPa. It is found that the superconducting behavior under pressure can be unambiguously classified by y based on the double-dome Tc-y phase diagram, indicative of distinguishable superconducting features at different y values. In this study, we comprehensively discuss the superconducting properties of the exotic material, BaTi2(Sb1-yBiy)2O, with a double-dome Tc-y phase diagram.

9.
Sci Rep ; 12(1): 7789, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552481

RESUMO

High-entropy-alloy (HEA) superconductors are a new class of disordered superconductors. However, commonality of superconducting characteristics of HEA materials is unclear. Here, we have investigated the crystal and electronic structure, and the robustness of superconducting states in a HEA-type metal telluride (MTe; M = Ag, In, Sn, Pb, Bi) under high pressure, and the results were compared with the pressure effects for a middle-entropy system (AgPbBiTe3) and a reference system of PbTe. When the crystal structure is CsCl-type, all phases show superconductivity under high pressure but exhibit different pressure dependences of the transition temperature (Tc). For PbTe, its Tc decreases with pressure. In contrast, the Tc of HEA-type AgInSnPbBiTe5 is almost independent of pressure, for pressures ranging from 13.0 to 35.1 GPa. Those results suggest that the robustness of superconductivity to external pressure is linked to the configurational entropy of mixing at the M site in MTe. Since the trend is quite similar to previous work on a HEA (Ti-Zr-Hf-Nb-Ta), where the robustness of superconductivity was observed up to ~ 200 GPa, we propose that the robustness of superconductivity under high pressure would be a universal feature in HEA-type superconductors.

10.
Inorg Chem ; 61(18): 7043-7050, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35451819

RESUMO

We present a detailed experimental and computational investigation of the influence of pressure on the mixed-anion oxyhydride phase Ba2YHO3, which has recently been shown to support hydride conductivity. The unique feature of this layered perovskite is that the oxide and hydride anions are segregated into distinct regions of the unit cell, in contrast to the disordered arrangement in closely related Ba2ScHO3. Density functional theory (DFT) calculations reveal that the application of pressure drives two sequential B1-B2 transitions in the interlayer regions from rock salt to CsCl-type ordering, one in the hydride-rich layer at approximately 10 GPa and another in the oxide-rich layer at 35-40 GPa. To verify the theoretical predictions, we experimentally observe the structural transition at 10 GPa using high-pressure X-ray diffraction (XRD), but the details of the structure cannot be solved due to peak broadening of the XRD patterns. We use DFT to explore the structural impact of pressure on the atomic scale and show how the pressure-dependent properties can be understood in terms of simple electrostatic engineering.

11.
Phys Chem Chem Phys ; 24(12): 7185-7194, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262150

RESUMO

The structural and superconducting properties of alkali-Bi-based compounds, KBi2 and RbBi2, were investigated over a wide pressure range for the first time. The samples of KBi2 and RbBi2 were prepared using a liquid ammonia (NH3) technique, and demonstrated superconductivity with superconducting transition temperatures, Tc, of 3.50 and 4.21 K at ambient pressure, respectively. The onset superconducting transition temperature, Tconset, of KBi2 decreased slightly; however, it suddenly jumped at 2 GPa and increased gradually with pressure, indicating the presence of two superconducting phases in the low-pressure range. The pressure-dependent X-ray diffraction patterns indicate that the KBi2 sample decomposed into KBi and Bi at pressures higher than 2.5 GPa. Moreover, a discontinuous change in Tconset was observed for KBi2 at 9 GPa, which reflects the decomposition of KBi2 into KBi and Bi. By contrast, the value of Tconset of RbBi2 was almost constant over a pressure range of 0-8 GPa. Thus, the superconducting properties and stability of alkali-Bi-based compounds against pressure were comprehensively explored in this study. In addition, the superconducting Cooper pair symmetry was investigated from the magnetic field dependence of Tc of KBi2 at 0.790 and 2.32 GPa, and of RbBi2 at 1.17 GPa, indicating the exact deviation from the simple s-wave paring model, which may be due to the complex electronic structure of Bi. The results elucidated the exotic superconducting properties of KBi2 and RbBi2 based on the pressure and magnetic field dependence of Tc and verified the chemical stability of KBi2 under pressure.

12.
J Phys Condens Matter ; 34(25)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35354125

RESUMO

The hydrostatic pressure dependent evolution of the electronic and magnetic structure of LaCo5and YCo5was investigated by means of x-ray emission spectroscopy, x-ray diffraction, and spin-polarized density functional theory (DFT) calculations. Using experimental lattice parameters the DFT correctly predicts the pressure of the magnetic transition in both compounds to be 26 GPa (La) and 22-23 GPa (Y). The transition was experimentally resolved in the changes of the electronic structure via the integrated absolute difference of the CoKßemission spectra. Comparison of theory and experiment confirm for the first time a common feature in both LaCo5and YCo5to be the source of the transition; the Fermi-level crossing of an up-spin polarized flat band driving the systems into a low spin configuration via a Lifshitz type transition of the Fermi surface. Another phase transition observed around 12 GPa in LaCo5was clarified to be caused by the change in the down-spin density of states at the Fermi level.

13.
Phys Chem Chem Phys ; 23(40): 23014-23023, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612269

RESUMO

Herein, we report the preparation and characterization of BaBi3 clarified by DC magnetic susceptibility, powder X-ray diffraction (XRD), and electrical transport. The superconducting properties of BaBi3 were elucidated through the magnetic and electrical transport properties in a wide pressure range. The superconducting transition temperature, Tc, showed a slight decrease (or almost constant Tc) against pressure up to 17.2 GPa. The values of the upper critical field, Hc2, at 0 K, were determined to be 1.27 T at 0 GPa and 3.11 T at 2.30 GPa, using the formula, because p-wave pairing appeared to occur for this material at both pressures, indicating the unconventionality of superconductivity. This result appears to be consistent with the topological non-trivial nature of superconductivity predicted theoretically. The pressure-dependent XRD patterns measured at 0-20.1 GPa indicated no structural phase transitions up to 20.1 GPa, i.e., the structural phase transitions from the α phase to the ß or γ phase which are induced by an application of pressure were not observed, contrary to the previous report, demonstrating that the α phase is maintained over the entire pressure range. Admittedly, the lattice constants and the volume of the unit cell, V, steadily decrease with increasing pressure up to 20.1 GPa. In this study, the plots of Tcversus p and V versus p of BaBi3 are depicted over a wide pressure range for the first time.

14.
J Phys Condens Matter ; 33(48)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34492649

RESUMO

The crystal structures of Sb2Te3-ySey(y= 0.6 andy= 1.2) at 0-24 GPa were investigated by synchrotron x-ray diffraction. The stoichiometry of Sb2Te3-ySeyused in this study was determined to be Sb2Te2.19(9)Se0.7(2)fory= 0.6 and Sb2Te1.7(1)Se1.3(3)fory= 1.2, on the basis of energy-dispersive x-ray spectroscopy. The sample of Sb2Te2.19(9)Se0.7(2)showed a structural phase transition from a rhombohedral structure (space group No. 166,R3¯m) (phase I) to a monoclinic structure (space group No. 12,C2/m) (phase II), with increasing pressure up to ∼9 GPa. A new structural phase (phase II') emerged at 17.7 GPa, a monoclinic structure with the space groupC2/c(No. 15). Finally, a 9/10-fold monoclinic structure (space group No. 12,C2/m) (phase III) was observed at 21.8 GPa. In contrast, the sample of Sb2Te1.7(1)Se1.3(3)provided only phase I (space group No. 166,R3¯m) and phase II (space group No. 12,C2/m), showing one structural phase transition from 0-19.5 GPa. These samples were not superconductors at ambient pressure, but superconductivity suddenly appeared with increasing pressure. Superconductivity with superconducting transition temperatures (Tc's) of 2 and 4 K was observed above 6 GPa in phase I of Sb2Te2.19(9)Se0.7(2). In this sample, theTcvalues of 6 and 9 K were observed in phase II and phase II' or III of Sb2Te2.19(9)Se0.7(2), respectively. Superconductivity withTc's of 4 and 5 K suddenly emerged in Sb2Te1.7(1)Se1.3(3)at 13.6 GPa, which corresponds to phase II, and it evolved to 6.0 K under further increased pressure. ATcvalue of 9 K was finally found above 15 GPa. The magnetic field dependence ofTcin phase II of Sb2Te2.19(9)Se0.7(2)and Sb2Te1.7(1)Se1.3(3)followed ap-wave polar model, suggesting topologically nontrivial superconductivity.

15.
J Phys Condens Matter ; 33(25)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33890871

RESUMO

We examine electronic and crystal structures of iron-based superconductorsLnFeAsO1-xHx(Ln= La, Sm) under pressure by means of x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), and x-ray diffraction. In LaFeAsO the pre-edge peak on high-resolution XAS at the Fe-Kabsorption edge gains in intensity on the application of pressure up to 5.7 GPa and it saturates in the higher pressure region. We found integrated-absolute difference values on XES forLn= La, corresponding to a spin state, decline on the application of pressure, and then it is minimized when theTcapproaches the maximum at around 5 GPa. In contrast, such the optimum value was not detected forLn= Sm. We reveal that the superconductivity is closely related to the lower spin state forLn= La unlike Sm case. We observed that As height from the Fe basal plane and As-Fe-As angle on the FeAs4tetrahedron forLn= La deviate from the optimum values of the regular tetrahedron in superconducting (SC) phase, which has been widely accepted structural guide to SC thus far. In contrast, the structural parameters were held near the optimum values up to ∼15 GPa forLn= Sm.

16.
J Phys Condens Matter ; 33(25)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33878750

RESUMO

A carrier doping by a hydrogen substitution in LaFeAsO1-xHxis known to cause two superconducting (SC) domes with the magnetic order at both end sides of the doping. In contrast, SmFeAsO1-xHxhas a similar phase diagram but shows single SC dome. Here, we investigated the electronic and crystal structures for iron oxynitrideLnFeAsO1-xHx(Ln= La, Sm) with the range ofx= 0-0.5 by using x-ray absorption spectroscopy, x-ray emission spectroscopy, and x-ray diffraction. For both compounds, we observed that the pre-edge peaks of x-ray absorption spectra near the Fe-Kedge were reduced in intensity on doping. The character arises from the weaker As-Fe hybridization with the longer As-Fe distance in the higher doped region. We can reproduce the spectra near the Fe-Kedge according to the Anderson impurity model with realistic valence structures using the local-density approximation (LDA) plus dynamical mean-field theory (DMFT). ForLn= Sm, the integrated-absolute difference (IAD) analysis from x-ray Fe-Kßemission spectra increases significantly. This is attributed to the enhancement of magnetic moment of Fe 3delectrons stemming from the localized picture in the higher doped region. A theoretical simulation implementing the self-consistent vertex-correction method reveals that the single dome superconducting phase forLn= Sm arises from a better nesting condition in comparison withLn= La.

17.
Dalton Trans ; 50(8): 3005-3010, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33566052

RESUMO

The quite simple but relatively stable VF3-type compounds are known to be of major interest due to their building blocks - octahedra that are extremely important in perovskites as well. Here, we show that the VF6 octahedron in VF3 varies over a fairly wide pressure range (0-50 GPa), maintaining undisturbed rhombohedral crystal symmetry. Half of this pressure, VF6 rotates easily while the other undergoes strong uniaxial deformation in a "super-dense" condition. The congested sphere packing ultimately does not endure and drives the material to amorphize. We observed that the amorphous state could be quenched and acquire a transparent glass-like appearance when unloaded to ambient conditions. Dramatic, pressure-induced changes are clarified by phonon dispersion curves with the imaginary phonon mode, the so-called phonon soft mode, which indicates the structural instability. The distortion of the VF6 octahedra is attributed to the distinctive amorphization that could be further searched for throughout the whole almost identical VF3-type series providing metal trifluorides of various amorphous species.

18.
Inorg Chem ; 60(6): 3585-3592, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33615782

RESUMO

We investigated the pressure dependence of electric transport in a superconducting sample, Ba0.77Na0.23Ti2Sb2O, to complete the phase diagram of superconducting transition temperature (Tc) against pressure (p). This superconducting sample exhibits a Tc value of 5.8 K at ambient pressure. Here, the superconductivity of the recently reported sample was investigated over a wide pressure range. The Tc value monotonously decreased with pressure below 8 GPa. Interestingly, the Tc value rapidly increased above 8 GPa and slowly declined with pressure above 11 GPa. Thus, a new superconducting phase was discovered above ∼9 GPa. The crystal structure of Ba0.77Na0.23Ti2Sb2O was also elucidated at 0-22.0 GPa with synchrotron X-ray powder diffraction. Consequently, an evident relation between the crystal structure and the superconductivity was revealed, namely, a clear structural phase transition was observed at 8-11 GPa, where the Tc value rapidly increased against pressure. This study provides detailed information on the superconductivity of Ba0.77Na0.23Ti2Sb2O under pressure, which will lead to a comprehensive understanding of pressure-driven superconductivity.

19.
J Phys Condens Matter ; 33(13): 135702, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33511965

RESUMO

The topological insulator PdBi2 exhibits two different crystal phases at ambient pressure, i.e., 'α-PdBi2' and ' -PdBi2'. The pressure dependence of crystal structure and superconductivity of α-PdBi2 has been fully elucidated thus far. However, the physical properties of ß-PdBi2 crystals under pressure have not been sufficiently investigated. In this study, we fully investigate the crystal structure and superconductivity of ß-PdBi2 under pressure based on synchrotron x-ray diffraction (XRD) patterns. The temperature dependence of ß-PdBi2 indicates its superconductivity with a superconducting transition temperature (T c) as high as 4.10 K, and its crystal structure is tetragonal [space group of I4/mmm (no. 139)]. The XRD patterns at 0-22.0 GPa indicate no structural phase transitions, and the unit cell volume shrinks monotonically with pressure, unlike the behavior of α-PdBi2. Furthermore, α-PdBi2 transformed to ß-PdBi2 under pressure. This suggests that ß-PdBi2 is stable under pressure. The superconductivity is clearly observed at 0-11.8 GPa, and the value of T c is almost constant at ∼4.4 K. The temperature dependence of the upper critical field at ambient pressure and 10.7 GPa indicates that the superconductivity is not attributed to a simple s-wave dirty limit but an s-wave clean or p-wave polar model. This is the first systematic study of superconductivity of topological insulator ß-PdBi2 under pressure.

20.
Phys Chem Chem Phys ; 22(40): 23315-23322, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33034332

RESUMO

A new superconducting sample, BaTi2Bi2O, was synthesized and characterized over a wide pressure range. The superconducting transition temperature, Tc, of BaTi2Bi2O was 4.33 K at ambient pressure. The crystal structure was tetragonal (space group of P4/mmm (No. 123)), according to the X-ray diffraction (XRD) pattern at ambient pressure. The XRD pattern was analyzed using the Le Bail method. The magnetic-field dependence of the magnetization at different temperatures was precisely investigated to elucidate the characteristics of the superconductivity. The pressure-dependent XRD patterns showed absence of structural phase transitions up to 19.8 GPa. The superconducting properties of BaTi2Bi2O were investigated under pressure. Tc monotonously increased with the pressure (p) up to 4.0 GPa and saturated above 4.0 GPa. The variations in the Tc-p plot were thoroughly analyzed. The Cooper pair symmetry (or superconducting pairing mechanism) was analyzed based on the magnetic field dependence of the superconductivity at ambient and high pressures, which indicated a sign of p-wave pairing for the superconductivity of BaTi2Bi2O, i.e., topologically nontrivial sign was suggested for BaTi2Bi2O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...