Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; 42(3): 309-16, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19250291

RESUMO

OBJECTIVE: Mesenchymal stem cells (MSC) have both self-renewal and multilineage differentiation potential, and bone marrow-derived MSC have been applied for tissue regeneration and repair. Although adipose tissue-derived MSC (ASC) have emerged as an alternative cell source, little information is available regarding the biologic difference between ASC derived from visceral and subcutaneous fat. Therefore, we aimed to compare the proliferation and gene expression profile of cultured human visceral ASC (VASC) and subcutaneous ASC (SASC), and to identify a novel gene involved in proliferation and differentiation of ASC. MATERIALS AND METHODS: We performed microarray analysis of cultured VASC and SASC, and investigated the role of tazarotene-induced gene 1 (TIG1), a most differentially expressed gene, in the proliferation and differentiation of ASC. RESULTS: SASC proliferated faster than VASC for over 10 passages, and TIG1 expression was consistently up-regulated in VASC of humans, rats and mice. Overexpression of the TIG1 gene in human SASC inhibited cell proliferation, whereas knockdown of TIG1 expression by siRNA promoted cell proliferation. In addition, overexpression of the TIG1 gene in SASC enhanced their differentiation into adipocytes, and promoted up-regulation of peroxisome proliferators-activated receptor gamma and CCAAT/enhancer binding protein alpha. On the other hand, TIG1 overexpression in SASC inhibited their differentiation into osteocytes and the expression of osteocalcin. CONCLUSION: TIG1 plays an important role in regulating proliferation and differentiation of ASC.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/fisiologia , Proliferação de Células , Proteínas de Membrana/fisiologia , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteócitos/citologia , Ratos , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA