Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38690064

RESUMO

The dynamics of microtubule-mediated protrusions, termed Interplanar Amida Network (IPAN) in Drosophila pupal wing, involve cell shape changes. The molecular mechanisms underlying these processes are yet to be fully understood. This study delineates the stages of cell shape alterations during the disassembly of microtubule protrusions and underscores the pivotal role of α-Spectrin in driving these changes by regulating both the microtubule and actomyosin networks. Our findings also demonstrate that α-Spectrin is required for the apical relaxation of wing epithelia during protrusion disassembly, indicating its substantial contribution to the robustness of 3D tissue morphogenesis.

2.
EMBO J ; 43(4): 568-594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263333

RESUMO

Comprehensive analysis of cellular dynamics during the process of morphogenesis is fundamental to understanding the principles of animal development. Despite recent advancements in light microscopy, how successive cell shape changes lead to complex three-dimensional tissue morphogenesis is still largely unresolved. Using in vivo live imaging of Drosophila wing development, we have studied unique cellular structures comprising a microtubule-based membrane protrusion network. This network, which we name here the Interplanar Amida Network (IPAN), links the two wing epithelium leaflets. Initially, the IPAN sustains cell-cell contacts between the two layers of the wing epithelium through basal protrusions. Subsequent disassembly of the IPAN involves loss of these contacts, with concomitant degeneration of aligned microtubules. These processes are both autonomously and non-autonomously required for mitosis, leading to coordinated tissue proliferation between two wing epithelia. Our findings further reveal that a microtubule organization switch from non-centrosomal to centrosomal microtubule-organizing centers (MTOCs) at the G2/M transition leads to disassembly of non-centrosomal microtubule-derived IPAN protrusions. These findings exemplify how cell shape change-mediated loss of inter-tissue contacts results in 3D tissue morphogenesis.


Assuntos
Drosophila , Microtúbulos , Animais , Microtúbulos/metabolismo , Epitélio/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Morfogênese
3.
Sci Rep ; 13(1): 10828, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402826

RESUMO

Lodging of cereal crops significantly reduces grain yield and quality, making lodging resistance a prime target for breeding programs. However, lodging resistance among different rice (Oryza sativa L.) cultivars in the field remains largely unknown, as is the relationship between the major properties of culms such as their morphological and mechanical properties. Here, we investigated the morphological and mechanical properties of 12 rice cultivars by considering different internodes within culms. We detected variation in these two traits among cultivars: one set of cultivars had thicker but softer culms (thickness-type), while the other set of cultivars showed stiffer but thinner culms (stiffness-type). We designate this variation as a thickness-stiffness trade-off. We then constructed a mechanical model to dissect the mechanical and/or morphological constraints of rice culms subjected to their own weight (self-weight load). Through modeling, we discovered that ear weight and the morphology of the highest internode were important for reducing deflection, which may be important factors to achieve higher lodging resistance. The mechanical theory devised in this study could be used to predict the deflection of rice culms and may open new avenues for novel mechanics-based breeding techniques.


Assuntos
Oryza , Oryza/genética , Oryza/anatomia & histologia , Melhoramento Vegetal/métodos , Fenótipo , Grão Comestível/genética
4.
Plant Cell Physiol ; 64(11): 1279-1288, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943754

RESUMO

Polarization of the zygote defines the body axis during plant development. In Arabidopsis (Arabidopsis thaliana), the zygote becomes polarized and elongates in the longitudinal direction, ultimately forming the apical-basal axis of the mature plant. Despite its importance, the mechanism for this elongation remains poorly understood. Based on live-cell imaging of the zygote, we developed new image analysis methods, referred to as coordinate normalization, that appropriately fix and align positions in an image, preventing fluctuation across a temporal sequence of images. Using these methods, we discovered that the zygote elongates only at its apical tip region, similar to tip-growing cells such as pollen tubes and root hairs. We also investigated the spatiotemporal dynamics of the apical tip contour of the zygote and observed that the zygote tip retains its isotropic, hemispherical apical shape during cell elongation. By looking at the elliptical fitting of the contour over time, we further discovered that the apical cell tip becomes thinner at first and then thickens, with a transient increase in growth speed that is followed by the first cell division. We performed the same series of analyses using root hairs and established that both the hemispherical tip shape and the changes in growth rate associated with changes in tip size are specific to the zygote. In summary, the Arabidopsis zygote undergoes directional elongation as a tip-growing cell, but its tip retains an unusual isotropic shape, and the manner of growth changes with the developmental stage.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Zigoto , Divisão Celular , Tubo Polínico , Proteínas de Arabidopsis/genética , Raízes de Plantas
5.
Biophys J ; 116(6): 1152-1158, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30826009

RESUMO

For isolated single cells on a substrate, the intracellular stiffness, which is often measured as the Young's modulus, E, by atomic force microscopy (AFM), depends on the substrate rigidity. However, little is known about how the E of cells is influenced by the surrounding cells in a cell population system in which cells physically and tightly contact adjacent cells. In this study, we investigated the spatial heterogeneities of E in a jammed epithelial monolayer in which cell migration was highly inhibited, allowing us to precisely measure the spatial distribution of E in large-scale regions by AFM. The AFM measurements showed that E can be characterized using two spatial correlation lengths: the shorter correlation length, lS, is within the single cell size, whereas the longer correlation length, lL, is longer than the distance between adjacent cells and corresponds to the intercellular correlation of E. We found that lL decreased significantly when the actin filaments were disrupted or calcium ions were chelated using chemical treatments, and the decreased lL recovered to the value in the control condition after the treatments were washed out. Moreover, we found that lL decreased significantly when E-cadherin was knocked down. These results indicate that the observed long-range correlation of E is not fixed within the jammed state but inherently arises from the formation of a large-scale actin filament structure via E-cadherin-dependent cell-cell junctions.


Assuntos
Módulo de Elasticidade , Células Epiteliais/citologia , Microscopia de Força Atômica , Citoesqueleto de Actina/metabolismo , Animais , Fenômenos Biomecânicos , Caderinas/metabolismo , Cães , Células Epiteliais/metabolismo , Junções Intercelulares , Células Madin Darby de Rim Canino
6.
Proc Natl Acad Sci U S A ; 116(10): 4352-4361, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760594

RESUMO

At the level of organ formation, tissue morphogenesis drives developmental processes in animals, often involving the rearrangement of two-dimensional (2D) structures into more complex three-dimensional (3D) tissues. These processes can be directed by growth factor signaling pathways. However, little is known about how such morphological changes affect the spatiotemporal distribution of growth factor signaling. Here, using the Drosophila pupal wing, we address how decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signaling and 3D wing morphogenesis are coordinated. Dpp, expressed in the longitudinal veins (LVs) of the pupal wing, initially diffuses laterally within both dorsal and ventral wing epithelia during the inflation stage to regulate cell proliferation. Dpp localization is then refined to the LVs within each epithelial plane, but with active interplanar signaling for vein patterning/differentiation, as the two epithelia appose. Our data further suggest that the 3D architecture of the wing epithelia and the spatial distribution of BMP signaling are tightly coupled, revealing that 3D morphogenesis is an emergent property of the interactions between extracellular signaling and tissue shape changes.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Morfogênese/fisiologia , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Morfogênese/genética , Asas de Animais/anatomia & histologia
7.
J Theor Biol ; 427: 17-27, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28549619

RESUMO

The wings in different insect species are morphologically distinct with regards to their size, outer contour (margin) shape, venation, and pigmentation. The basis of the diversity of wing margin shapes remains unknown, despite the fact that gene networks governing the Drosophila wing development have been well characterised. Among the different types of wing margin shapes, smoothly curved contour is the most frequently found and implies the existence of a highly organised, multicellular mechanical structure. Here, we developed a mechanical model for diversified insect wing margin shapes, in which non-uniform bending stiffness of the wing margin is considered. We showed that a variety of spatial distribution of the bending stiffness could reproduce diverse wing margin shapes. Moreover, the inference of the distribution of the bending stiffness from experimental images indicates a common spatial profile among insects tested. We further studied the effect of the intrinsic tension of the wing blade on the margin shape and on the inferred bending stiffness. Finally, we implemented the bending stiffness of the wing margin in the cell vertex model of the wing blade, and confirmed that the hybrid model retains the essential feature of the margin model. We propose that in addition to morphogenetic processes in the wing blade, the spatial profile of the bending stiffness in the wing margin can play a pivotal role in shaping insect wings.


Assuntos
Drosophila/anatomia & histologia , Modelos Biológicos , Asas de Animais/anatomia & histologia , Animais
8.
PLoS One ; 11(9): e0161336, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588418

RESUMO

The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses.


Assuntos
Epitélio/crescimento & desenvolvimento , Odontogênese/fisiologia , Dente/crescimento & desenvolvimento , Animais , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Forma Celular/fisiologia , Camundongos , Microscopia Confocal/métodos , Modelos Biológicos
9.
J Cell Biol ; 212(5): 561-75, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26929452

RESUMO

In the olfactory epithelium (OE), olfactory cells (OCs) and supporting cells (SCs), which express different cadherins, are arranged in a characteristic mosaic pattern in which OCs are enclosed by SCs. However, the mechanism underlying this cellular patterning is unclear. Here, we show that the cellular pattern of the OE is established by cellular rearrangements during development. In the OE, OCs express nectin-2 and N-cadherin, and SCs express nectin-2, nectin-3, E-cadherin, and N-cadherin. Heterophilic trans-interaction between nectin-2 on OCs and nectin-3 on SCs preferentially recruits cadherin via α-catenin to heterotypic junctions, and the differential distributions of cadherins between junctions promote cellular intercalations, resulting in the formation of the mosaic pattern. These observations are confirmed by model cell systems, and various cellular patterns are generated by the combinatorial expression of nectins and cadherins. Collectively, the synergistic action of nectins and cadherins generates mosaic pattern, which cannot be achieved by a single mechanism.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nectinas
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052711, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493820

RESUMO

In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, and the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and the curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them in the vertex model. Thus, a model with the curvatures is constructed, and its algorithm for simulation is provided. The possible extensions and applications of this model are also discussed.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 1): 031124, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23030883

RESUMO

A family of models of liquid on a two-dimensional lattice (2D lattice liquid models) have been proposed as primitive models of soft-material membrane. As a first step, we have formulated them as single-component, single-layered, classical particle systems on a two-dimensional surface with no explicit viscosity. Among the family of the models, we have shown and constructed two stochastic models, a vicious walk model and a flow model, on an isotropic regular lattice and on some honeycomb lattices of various sizes. In both cases, the dynamics is governed by the nature of the frustration of the particle movements. By simulations, we have found the approximate functional form of the frustration probability and peculiar anomalous diffusions in their time-averaged mean-square displacements in the flow model. The relations to other existing statistical models and possible extensions of the models are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...