Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 180: 82-89, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29040899

RESUMO

After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in 2011, aerial radiation monitoring (ARM) using a manned helicopter was conducted to rapidly measure air dose rates and the deposition of radioactive nuclides over a large area. Typically, the air dose rate is obtained by conversion from the count rate using conventional flat source model (FSM). The converted dose rate obtained via aerial monitoring poorly matches the results of ground measurement in the mountain and forest areas because FSM does not consider topographical effects. To improve the conversion accuracy, we developed new methods to analyze aerial monitoring data using topographical source model (TSM) based on the analytical calculation of the gamma-ray flux. The ARM results converted using both FSM as well as TSM were compared with ground measurement data obtained after the FDNPS accident. By using TSM, the conversion accuracy was improved. In addition, to determine a parameter sensitive to topographical effects, we examined five parameters and it was clear that the difference between the elevation just below the helicopter and the mean elevation within the measurement area was the most influential.


Assuntos
Poluentes Radioativos do Ar/análise , Aeronaves , Monitoramento de Radiação/métodos , Florestas , Acidente Nuclear de Fukushima , Japão , Cinza Radioativa/análise
2.
J Environ Radioact ; 166(Pt 1): 74-82, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27400653

RESUMO

Large quantities of radioactive materials were released into the environment as a result of the Fukushima Daiichi Nuclear Power Station accident. Many inhabitants residing in the affected areas are now exposed to radiation in their daily lives. In an attempt to manage this radiation dose, an additional radiation dose of 1 mSv/y was adopted as a long-term dosimetric target. An activity level reading of 0.23 µSv/h was then determined as a guidance value to achieve the target by implementing decontamination measures. The objectives of this study are to assess the effects of decontamination based on this guidance value and to predict any possible future problems with the decontamination strategy. Using a probabilistic approach, we assessed the annual effective dose of indoor workers, outdoor workers, and pensioners in the Fukushima Prefecture. Our probabilistic model considers the variabilities in behavioral patterns and Cs-137 surface-activity levels. Five years after the initial contamination, the 95th percentiles of indoor workers and pensioners in 53 of the 59 municipalities were found to receive annual effective doses of below 1 mSv/y (0.026-0.73 mSv/y). However, for outdoor workers in 25 municipalities, the annual doses were over 1 mSv/y (1.0-35 mSv/y). Therefore, the guidance value is effective for indoor workers and pensioners; to determine whether additional countermeasures for outdoor workers should be implemented, a detailed assessment that uses more realistic assumptions is required.


Assuntos
Acidente Nuclear de Fukushima , Doses de Radiação , Exposição à Radiação/estatística & dados numéricos , Descontaminação , Humanos , Japão , Monitoramento de Radiação
3.
Risk Anal ; 37(7): 1256-1267, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27689685

RESUMO

Ingestion of contaminated soil is one potential internal exposure pathway in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Doses from this pathway can be overestimated if the availability of radioactive nuclides in soils for the gastrointestinal tract is not considered. The concept of bioaccessibility has been adopted to evaluate this availability based on in vitro tests. This study evaluated the bioaccessibility of radioactive cesium from soils via the physiologically-based extraction test (PBET) and the extractability of those via an extraction test with 1 mol/L of hydrochloric acid (HCl). The bioaccessibility obtained in the PBET was 5.3% ± 1%, and the extractability in the tests with HCl was 16% ± 3%. The bioaccessibility was strongly correlated with the extractability. This result indicates the possibility that the extractability in HCl can be used as a good predictor of the bioaccessibility with PBET. In addition, we assessed the doses to children from the ingestion of soil via hand-to-mouth activity based on our PBET results using a probabilistic approach considering the spatial distribution of radioactive cesium in Date City in Fukushima Prefecture and the interindividual differences in the surveyed amounts of soil ingestion in Japan. The results of this assessment indicate that even if children were to routinely ingest a large amount of soil with relatively high contamination, the radiation doses from this pathway are negligible compared with doses from external exposure owing to deposited radionuclides in Fukushima Prefecture.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Doses de Radiação , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Solo , Disponibilidade Biológica , Criança , Cidades , Monitoramento Ambiental/métodos , Humanos , Japão , Probabilidade , Medição de Risco/métodos
4.
Med Phys ; 36(6): 2222-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19610311

RESUMO

Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs.


Assuntos
Radioisótopos de Carbono/uso terapêutico , Filtração/instrumentação , Radioterapia com Íons Pesados , Radioterapia Conformacional/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
5.
Phys Med Biol ; 54(7): 2015-27, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19287085

RESUMO

The pencil-beam algorithm is valid only when elementary Gaussian beams are small enough compared to the lateral heterogeneity of a medium, which is not always true in actual radiotherapy with protons and ions. This work addresses a solution for the problem. We found approximate self-similarity of Gaussian distributions, with which Gaussian beams can split into narrower and deflecting daughter beams when their sizes have overreached lateral heterogeneity in the beam-transport calculation. The effectiveness was assessed in a carbon-ion beam experiment in the presence of steep range compensation, where the splitting calculation reproduced a detour effect amounting to about 10% in dose or as large as the lateral particle disequilibrium effect. The efficiency was analyzed in calculations for carbon-ion and proton radiations with a heterogeneous phantom model, where the beam splitting increased computing times by factors of 4.7 and 3.2. The present method generally improves the accuracy of the pencil-beam algorithm without severe inefficiency. It will therefore be useful for treatment planning and potentially other demanding applications.


Assuntos
Algoritmos , Radioterapia com Íons Pesados , Radioterapia/métodos , Carbono/uso terapêutico , Modelos Biológicos , Distribuição Normal , Imagens de Fantasmas , Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Phys Med Biol ; 53(12): 3113-27, 2008 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-18495975

RESUMO

A model for beam customization with collimators and a range-compensating filter based on the phase-space theory for beam transport is presented for dose distribution calculation in the treatment planning of radiotherapy with protons and heavier ions. Independent handling of pencil beams in conventional pencil-beam algorithms causes unphysical collimator-height dependence in the middle of large fields, which is resolved by the framework comprised of generation, transport, collimation, regeneration, range-compensation and edge-sharpening processes with a matrix of pencil beams. The model was verified to be consistent with measurement and analytic estimation at a submillimeter level in the penumbra of individual collimators with a combinational-collimated carbon-ion beam. The model computation is fast, accurate and readily applicable to pencil-beam algorithms in treatment planning with the capability of combinational collimation to make the best use of the beam-customization devices.


Assuntos
Simulação por Computador , Radioterapia/instrumentação , Radioterapia/métodos , Carbono/química , Elétrons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Sensibilidade e Especificidade
7.
Med Phys ; 35(2): 602-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18383681

RESUMO

A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of 30 degrees incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.


Assuntos
Algoritmos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Carga Corporal (Radioterapia) , Radioterapia com Íons Pesados , Humanos , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...