Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Cells ; 19(9): 704-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25145264

RESUMO

Gomafu/MIAT/Rncr2 is a long noncoding RNA that has been proposed to control retinal cell specification, stem cell differentiation and alternative splicing of schizophrenia-related genes. However, how Gomafu controls these biological processes at the molecular level has remained largely unknown. In this study, we identified the RNA-binding protein Celf3 as a novel Gomafu-associating protein. Knockdown of Celf3 led to the down-regulation of Gomafu, and cross-link RNA precipitation analysis confirmed specific binding between Celf3 and Gomafu. In the neuroblastoma cell line Neuro2A, Celf3 formed novel nuclear bodies (named CS bodies) that colocalized with SF1, another Gomafu-binding protein. Gomafu, however, was not enriched in the CS bodies; instead, it formed distinct nuclear bodies in separate regions in the nucleus. These observations suggest that Gomafu indirectly modulates the function of the splicing factors SF1 and Celf3 by sequestering these proteins into separate nuclear bodies.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas CELF , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , Humanos , Fatores de Processamento de RNA , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética
2.
Methods Mol Biol ; 342: 277-86, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16957382

RESUMO

Recent studies have shown that the microRNA (miRNA) pathway is an evolutionarily conserved endogenous pathway that is important for normal development. Mature miRNAs are excised from precursors in a stepwise process and subsequently incorporated into an RNA-induced silencing complex (RISC), which mediates either cleavage of the target messenger RNA (mRNA) or translational repression, depending on the complementarity between the miRNA and its target mRNA. In this chapter, we describe in vitro precursor (pre)-miRNA processing assays using Drosophila Schneider-2 (S2) cell lysates and immunopurified materials.


Assuntos
Bioensaio , Drosophila/metabolismo , MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Animais , Extratos Celulares/química , Linhagem Celular , Drosophila/classificação , Drosophila/citologia , Técnicas In Vitro , MicroRNAs/genética , Interferência de RNA , Precursores de RNA/genética , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo
3.
RNA ; 11(7): 1004-11, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15987811

RESUMO

Argonaute proteins function in gene silencing induced by double-stranded RNA (dsRNA) in various organisms. In Drosophila, the Argonaute proteins AGO1 and AGO2 have been implicated in post-transcriptional gene-silencing (PTGS)/RNA interference (RNAi). In this study, we found that AGO1 and AGO2 depletion caused the accumulation of multicopied enhanced green fluorescence protein (EGFP) transgene transcripts in Drosophila S2 cells. Depletion of AGO1, the essential factor for miRNA biogenesis, led to an increased transcriptional rate of the transgenes. In contrast, depletion of AGO2, the essential factor for siRNA-directed RNAi, resulted in EGFP mRNA stabilization with concomitant shortening of the EGFP mRNA poly(A) tail. Our findings suggest that AGO1 and AGO2 mediate multicopied transgene silencing by different mechanisms. Intriguingly, Dicer2 depletion phenocopies AGO2 depletion, with an increase in EGFP protein levels and shortening of the EGFP mRNA poly(A) tail. The possibility that AGO2 and Dicer2 involve, at least in part, poly(A) length maintenance of transgene mRNA suggests a potentially important link between transgene silencing and poly(A) tails.


Assuntos
Inativação Gênica , Poli A/química , Transgenes , Animais , Proteínas Argonautas , Western Blotting , Células Cultivadas , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Fatores de Iniciação em Eucariotos , Dosagem de Genes , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , MicroRNAs/biossíntese , Testes de Precipitina , Interferência de RNA , Processamento Pós-Transcricional do RNA , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/deficiência , Complexo de Inativação Induzido por RNA/metabolismo , Transcrição Gênica
4.
PLoS Biol ; 3(7): e235, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15918769

RESUMO

microRNAs (miRNAs) are a large family of 21- to 22-nucleotide non-coding RNAs that interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. miRNAs are excised in a stepwise process from primary miRNA (pri-miRNA) transcripts. The Drosha-Pasha/DGCR8 complex in the nucleus cleaves pri-miRNAs to release hairpin-shaped precursor miRNAs (pre-miRNAs). These pre-miRNAs are then exported to the cytoplasm and further processed by Dicer to mature miRNAs. Here we show that Drosophila Dicer-1 interacts with Loquacious, a double-stranded RNA-binding domain protein. Depletion of Loquacious results in pre-miRNA accumulation in Drosophila S2 cells, as is the case for depletion of Dicer-1. Immuno-affinity purification experiments revealed that along with Dicer-1, Loquacious resides in a functional pre-miRNA processing complex, and stimulates and directs the specific pre-miRNA processing activity. These results support a model in which Loquacious mediates miRNA biogenesis and, thereby, the expression of genes regulated by miRNAs.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
5.
Lab Invest ; 85(4): 464-73, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15711568

RESUMO

Aberrant promoter methylation and resultant silencing of several tumor suppressor genes play an important role in the pathogenesis of many tumor types. The human Ras association domain family 1A gene (RASSF1A), recently cloned from the lung tumor locus at 3p21.3, was shown to be frequently inactivated by hypermethylation of its promoter region in a number of malignancies. We have investigated the expression and epigenetic changes of this novel universal tumor suppressor gene in pituitary adenomas and correlated the data with clinicopathologic findings. Fresh frozen normal pituitary tissues and 52 primary pituitary adenomas including all major types were examined. Methylation-specific polymerase chain reaction (MSP), combined bisulfite restriction analysis (COBRA), bisulfite sequencing and semiquantitative reverse transcription-polymerase chain reaction were used to analyze DNA promoter methylation status and the mRNA expression of RASSF1A, respectively. High levels of RASSF1A transcript and no methylation of the RASSF1A promoter were found in normal pituitary tissues. RASSF1A promoter methylation was detected in 20 of 52 (38%) adenomas including all major types of pituitary adenomas. However, a lower frequency of methylation of the RASSF1A promoter was found in gonadotroph cell adenomas (15%) compared with growth hormone cell, prolactin cell, or adrenocorticotropic hormone cell adenomas (54, 46 and 50%, respectively). Methylation frequency was higher in the most aggressive adenomas (87% in grade IV tumors, P=0.0163). In addition, methylation of the RASSF1A promoter potentially correlated with higher labeling index of the proliferation marker Ki-67 (P=0.1475). Loss or significant reduction of RASSF1A messenger RNA transcripts was identified in 18 of 20 (90%) adenomas with hypermethylation of RASSF1A (P<0.0001). Our data suggest that promoter hypermethylation of RASSF1A and resultant alterations of RASSF1A expression may play a critical role in pituitary tumorigenesis and may be involved in tumor progression.


Assuntos
Adenoma/genética , Metilação de DNA , Neoplasias Hipofisárias/genética , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Sequência de Bases , Feminino , Humanos , Imuno-Histoquímica , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Genes Dev ; 18(14): 1655-66, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15231716

RESUMO

In mammalian cells, both microRNAs (miRNAs) and small interfering RNAs (siRNAs) are thought to be loaded into the same RNA-induced silencing complex (RISC), where they guide mRNA degradation or translation silencing depending on the complementarity of the target. In Drosophila, Argonaute2 (AGO2) was identified as part of the RISC complex. Here we show that AGO2 is an essential component for siRNA-directed RNA interference (RNAi) response and is required for the unwinding of siRNA duplex and in consequence assembly of siRNA into RISC in Drosophila embryos. However, Drosophila embryos lacking AGO2, which are siRNA-directed RNAi-defective, are still capable of miRNA-directed target RNA cleavage. In contrast, Argonaute1 (AGO1), another Argonaute protein in fly, which is dispensable for siRNA-directed target RNA cleavage, is required for mature miRNA production that impacts on miRNA-directed RNA cleavage. The association of AGO1 with Dicer-1 and pre-miRNA also suggests that AGO1 is involved in miRNA biogenesis. Our findings show that distinct Argonaute proteins act at different steps of the small RNA silencing mechanism and suggest that there are inherent differences between siRNA-initiated RISCs and miRNA-initiated RISCs in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , MicroRNAs/biossíntese , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas Argonautas , Sequência de Bases , Northern Blotting , Primers do DNA , Proteínas de Drosophila/fisiologia , Embrião não Mamífero/metabolismo , Fatores de Iniciação em Eucariotos , Complexo de Inativação Induzido por RNA/fisiologia
7.
Ment Retard Dev Disabil Res Rev ; 10(1): 68-74, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14994291

RESUMO

Fragile X syndrome is the most common heritable form of mental retardation caused by loss-of-function mutations in the FMR1 gene. The FMR1 gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. Recent work in Drosophila melanogaster has shown that the fly homolog of FMR1 (dFMR1) plays an important role in regulating neuronal morphology, which may underlie the observed deficits in behaviors of dFMR1 mutant flies. Biochemical analysis has revealed that dFMR1 forms a complex that includes ribosomal proteins and, surprisingly, Argonaute2 (AGO2), an essential component of the RNA-induced silencing complex (RISC) that mediates RNA interference (RNAi) in Drosophila. dFMR1 also associates with Dicer, another essential processing enzyme of the RNAi pathway. Moreover, both a micro-RNA (miRNA) and short interfering RNAs (siRNAs) can coimmunoprecipitate with dFMR1. Together these findings suggest that dFMR1 functions in an RNAi-related apparatus to regulate the expression of its target genes at the level of translation. These findings raise the possibility that Fragile X syndrome may be the result of a protein synthesis abnormality caused by a defect in an RNAi-related apparatus. Because the core mechanisms of complex behaviors such as learning and memory and circadian rhythms appear to be conserved, studies of Fragile X syndrome using Drosophila as a model provide an economy-of-scale for identifying biological processes that likely underlie the abnormal morphology of dendritic spines and behavioral disturbances observed in Fragile X patients.


Assuntos
Proteínas de Drosophila/deficiência , Drosophila melanogaster/genética , Inativação Gênica , Interferência de RNA , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Masculino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Mol Cell Biol ; 22(24): 8438-47, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446764

RESUMO

Fragile X syndrome is caused by loss of FMR1 protein expression. FMR1 binds RNA and associates with polysomes in the cytoplasm; thus, it has been proposed to function as a regulator of gene expression at the posttranscriptional level. Posttranslational modification of FMR1 had previously been suggested to regulate its activity, but no experimental support for this model has been reported to date. Here we report that FMR1 in Drosophila melanogaster (dFMR1) is phosphorylated in vivo and that the homomer formation and the RNA-binding activities of dFMR1 are modulated by phosphorylation in vitro. Identification of a protein phosphorylating dFMR1 showed it to be Drosophila casein kinase II (dCKII). dCKII directly interacts with and phosphorylates dFMR1 in vitro. The phosphorylation site in dFMR1 was identified as Ser406, which is highly conserved among FMR1 family members from several species. Using mass spectrometry, we established that Ser406 of dFMR1 is indeed phosphorylated in vivo. Furthermore, human FMR1 (hFMR1) is also phosphorylated in vivo, and alteration of the conserved Ser500 in hFMR1 abolishes phosphorylation by CKII in vitro. These studies support the model that the biological functions of FMR1, such as regulation of gene expression, are likely regulated by its phosphorylation.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Caseína Quinase II , Fracionamento Celular , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/fisiologia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Deficiência Intelectual , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Subunidades Proteicas , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Serina/metabolismo
10.
Genes Dev ; 16(19): 2497-508, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12368261

RESUMO

Fragile X syndrome is a common form of inherited mental retardation caused by the loss of FMR1 expression. The FMR1 gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. In Drosophila, the fly homolog of the FMR1 protein (dFMR1) binds to and represses the translation of an mRNA encoding of the microtuble-associated protein Futsch. We have isolated a dFMR1-associated complex that includes two ribosomal proteins, L5 and L11, along with 5S RNA. The dFMR1 complex also contains Argonaute2 (AGO2) and a Drosophila homolog of p68 RNA helicase (Dmp68). AGO2 is an essential component for the RNA-induced silencing complex (RISC), a sequence-specific nuclease complex that mediates RNA interference (RNAi) in Drosophila. We show that Dmp68 is also required for efficient RNAi. We further show that dFMR1 is associated with Dicer, another essential component of the RNAi pathway, and microRNAs (miRNAs) in vivo, suggesting that dFMR1 is part of the RNAi-related apparatus. Our findings suggest a model in which the RNAi and dFMR1-mediated translational control pathways intersect in Drosophila. Our findings also raise the possibility that defects in an RNAi-related machinery may cause human disease.


Assuntos
Proteínas de Drosophila , Inativação Gênica , Proteínas de Insetos/metabolismo , RNA Ribossômico 5S/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , RNA Helicases DEAD-box , Drosophila melanogaster , Proteína do X Frágil da Deficiência Intelectual , Humanos , Proteínas de Insetos/genética , Dados de Sequência Molecular , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...