Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696730

RESUMO

Reactive oxygen species are important effectors and modifiers of the acute inflammatory response, recruiting phagocytes including neutrophils to sites of tissue injury. In turn, phagocytes such as neutrophils are both consumers and producers of reactive oxygen species. Phagocytes including neutrophils generate reactive oxygen species in an oxidative burst through the activity of a multimeric phagocytic nicotinamide adenine dinucleotide phosphate oxidase complex. Mutations in the NOX2/CYBB (previously gp91phox) nicotinamide adenine dinucleotide phosphate oxidase subunit are the commonest cause of chronic granulomatous disease, a disease characterized by infection susceptibility and an inflammatory phenotype. To model chronic granulomatous disease, we made a nox2/cybb zebrafish (Danio rerio) mutant and demonstrated it to have severely impaired myeloid cell reactive oxygen species production. Reduced early survival of nox2 mutant embryos indicated an essential requirement for nox2 during early development. In nox2/cybb zebrafish mutants, the dynamics of initial neutrophil recruitment to both mild and severe surgical tailfin wounds was normal, suggesting that excessive neutrophil recruitment at the initiation of inflammation is not the primary cause of the "sterile" inflammatory phenotype of chronic granulomatous disease patients. This nox2 zebrafish mutant adds to existing in vivo models for studying reactive oxygen species function in myeloid cells including neutrophils in development and disease.


Assuntos
Mutação , Células Mieloides , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Peixe-Zebra , Animais , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Células Mieloides/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Neutrófilos/metabolismo , Infiltração de Neutrófilos , Cauda , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Doença Granulomatosa Crônica/genética , Modelos Animais de Doenças
2.
Blood ; 141(6): 645-658, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36223592

RESUMO

The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell-based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteoma , Animais , Humanos , Peixe-Zebra , Genética Humana , Mamíferos , Proteínas Adaptadoras de Transdução de Sinal
3.
Dis Model Mech ; 14(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34296745

RESUMO

Zebrafish are an important model for studying phagocyte function, but rigorous experimental systems to distinguish whether phagocyte-dependent effects are neutrophil or macrophage specific have been lacking. We have developed and validated transgenic lines that enable superior demonstration of cell-autonomous neutrophil and macrophage genetic requirements. We coupled well-characterized neutrophil- and macrophage-specific Gal4 driver lines with UAS:Cas9 transgenes for selective expression of Cas9 in either neutrophils or macrophages. Efficient gene editing, confirmed by both Sanger and next-generation sequencing, occurred in both lineages following microinjection of efficacious synthetic guide RNAs into zebrafish embryos. In proof-of-principle experiments, we demonstrated molecular and/or functional evidence of on-target gene editing for several genes (mCherry, lamin B receptor, trim33) in either neutrophils or macrophages as intended. These new UAS:Cas9 tools provide an improved resource for assessing individual contributions of neutrophil- and macrophage-expressed genes to the many physiological processes and diseases modelled in zebrafish. Furthermore, this gene-editing functionality can be exploited in any cell lineage for which a lineage-specific Gal4 driver is available. This article has an associated First Person interview with the first author of the paper.


Assuntos
Edição de Genes , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Humanos , Macrófagos/metabolismo , Neutrófilos/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Nature ; 591(7849): 281-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568815

RESUMO

Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.


Assuntos
Macrófagos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Mioblastos/citologia , Nicotinamida Fosforribosiltransferase/metabolismo , Nicho de Células-Tronco , Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Macrófagos/citologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Fator de Transcrição PAX7/metabolismo , RNA-Seq , Receptores CCR5/genética , Receptores CCR5/metabolismo , Regeneração/fisiologia , Análise de Célula Única , Peixe-Zebra/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...