Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(36): 48034-48042, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39215693

RESUMO

Organic photodetector (OPD) studies have undergone a revolutionary transformation by introducing nonfullerene acceptors (NFAs), which provide substantial benefits such as tunable band gaps and enhanced absorption in the visible spectrum. Vacuum-processed small-molecule-based OPD devices are presented in this study by utilizing a blend of boron subphthalocyanine (SubPc) and chlorinated subphthalocyanine (Cl6SubPc) as the active layer. Four different active layer thicknesses are further investigated to understand the intrinsic phenomena, unveiling the suppression of dark current density while maintaining photoexcitation and charge separation efficiency. Experimental results reveal that, at an applied bias of -3 V, the 50-nm-thick active layer achieves a remarkably low dark current density of 1.002 nA cm-2 alongside a high external quantum efficiency (EQE) of 52.932% and a responsivity of 0.226 A W-1. These impressive performance metrics lead to a specific detectivity of 1.263 × 1013 Jones. Furthermore, the findings offer new insights into intrinsic phenomena within the bulk heterojunction (BHJ), such as thermally generated current and exciton quenching. This integration is potentially well-heeled to revolutionize display technology by combining high-sensitivity photodetection, offering new possibilities for novel display panels with sensing applications.

2.
Heliyon ; 8(11): e11260, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36345523

RESUMO

Blood hemoglobin levels are a reliable indicator for anemia screening, which generally uses an invasive system or takes blood using a syringe. Spectrophotometry can work by "substituting" the use of a phlebotomy tube needle with electromagnetic wave radiation or light. This study aims to develop and carry out a noninvasive diagnostic test for measuring hemoglobin levels. There are three main stages in this research: (i) measuring hemoglobin concentration and scanning an incident wavelength on standard hemoglobin solutions and blood controls, (ii) making a prototype variant of a noninvasive blood hemoglobin level measurement device, and (iii) testing the technology unit on the developed prototype. The measured hemoglobin value by the Trax Control Meter for low, middle, and high levels is almost the same as the expected range values, namely, 13.09, 16.8, and 17.81 g/dL, respectively. Three sets of device prototype variants were successfully developed: (i) the noninvasive blood hemoglobin level measuring device based on Raspberry Pi Prototype on Infant Finger and Thigh Probes, (ii) the level measuring prototype noninvasive hemoglobin in blood based on Internet of Things and WebServer, and (iii) the prototype of noninvasive blood hemoglobin level measuring device on in vitro probe with reflectance method. Testing the accuracy of the Biorad MeterTrax Trilevel using a multiformula regression calculation using the ZunZun server shows that the tool has an accuracy ranging from 0.12 to 0.30 g/dL.

3.
Heliyon ; 8(9): e10504, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36132171

RESUMO

An alternative material, methylamine (MA)-doped poly[3-(4-carboxymethyl)thiophene-2,5-diyl] (P3CT) as hole transport layer (HTL) was investigated for efficient solution-processed near-infrared perovskite light-emitting diodes (NIR PeLEDs). The best NIR PeLEDs performance was achieved with an optimized composition ratio of the MA-doped P3CT (1:1) due to the balance of the electron and hole carrier in the active layer. The charge-balanced NIR PeLEDs exhibit the highest radiance of 858.37 W sr-1 m-2, a low turn-on voltage of 1.82 V, and an external quantum efficiency of 7.44%. Our findings show that using P3CT as an alternative HTL has the potential to significantly improve PeLED performance, allowing it to play a role in the development of practical applications in high-power NIR LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA