Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400932, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949892

RESUMO

Carbohydrate derivatives play a crucial role in biochemical and medicinal research. Therefore, the present study was designed to explore the synthesis of methyl α-D-glucopyranoside derivatives (1, MDG), focusing on their efficacy against bacterial and fungal infections. The structure of the synthesized compounds was ascertained using spectral and elemental analyses. Antimicrobial screening revealed strong antifungal properties and exhibited MIC values of 16-32 µg/L and MBC 64-128 µg/L. Structure-activity relationship (SAR) analysis indicated that adding nonanoyl and decanoyl groups to ribose moiety enhanced potency against both bacterial and fungal strains. Compounds 6 and 7, presented nonanoyl and decanoyl substituents and demonstrated greater efficacy. In addition, DFT studies identified compound 8 as possessing ideal electronic properties. Molecular docking revealed that compound 8 exhibits exceptional binding affinities to bacterial proteins, conferring potent antibacterial and antifungal activities. In addition, pharmacokinetic optimization via POM analysis highlighted compounds 1 and 2 as promising bioavailable drugs with minimal toxicity. Molecular dynamics simulations confirmed the stability of the 2-S. aureus complex, revealing the therapeutic potential of compounds 2 and 8. The integration of in vitro and in silico methods, including DFT anchoring dynamics and molecular dynamics simulations, provides a solid framework for the advancement of effective anti-infective drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...