Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(2): e0002423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939336

RESUMO

Vancomycin-resistant E. faecium (VREfm) is a significant public health concern because of limited treatment options. Genomic surveillance can be used to monitor VREfm transmission and evolution. Genomic analysis of VREfm has not been reported for the Dallas/Fort Worth/Arlington, TX, area, which is currently the 4th largest metropolitan area in the United States. Our study aimed to address this gap in knowledge by analyzing the genomes of 46 VREfm strains and 1 vancomycin-sensitive comparator collected during routine fecal surveillance of high-risk patients upon admission to a Dallas, TX, hospital system (August to October 2015). Thirty-one complete and 16 draft genome sequences were generated. The closed VREfm genomes possessed up to 12 extrachromosomal elements each. Overall, 251 closed putative plasmid sequences assigned to previously described and newly defined rep family types were obtained. Phylogenetic analysis identified 10 different sequence types (STs) among the isolates, with the most prevalent being ST17 and ST18. Strikingly, all but three of the VREfm isolates encoded vanA-type vancomycin resistance within Tn1546-like elements on a pRUM-like (rep17) plasmid backbone. Relative to a previously reported typing scheme for the vanA-carrying Tn1546, new variants of the Tn1546 were identified that harbored a combination of 7 insertion sequences (IS), including 3 novel IS elements reported here (ISEfa16, ISEfa17, and ISEfa18). We conclude that pRUM-like plasmids are important vectors for vancomycin resistance in the Dallas, TX, area and should be a focus of plasmid surveillance efforts. IMPORTANCE Vancomycin is an antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria. Vancomycin resistance is common in clinical isolates of the Gram-positive pathogen Enterococcus faecium. Among E. faecium strains, vancomycin resistance genes can be disseminated by plasmids with different host ranges and transfer efficiencies. Surveillance of resistance plasmids is critical to understanding antibiotic resistance transmission. This study analyzed the genome sequences of VREfm isolates collected from the Dallas, TX, area, with particular focus on the mobile elements associated with vancomycin resistance genes. We found that a single plasmid family, the pRUM-like family, was associated with vancomycin resistance in the majority of isolates sampled. Our work suggests that the pRUM-like plasmids should continue to be studied to understand their mechanisms of maintenance, transmission, and evolution in VREfm.


Assuntos
Enterococcus faecium , Resistência a Vancomicina , Humanos , Estados Unidos , Resistência a Vancomicina/genética , Enterococcus faecium/genética , Vancomicina/farmacologia , Texas , Filogenia , Plasmídeos/genética , Elementos de DNA Transponíveis
2.
Microbiologyopen ; 11(2): e1273, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478284

RESUMO

The human microbiota harbors diverse bacterial and bacteriophage (phage) communities. Bacteria evolve to overcome phage infection, thereby driving phage evolution to counter bacterial resistance. Understanding how phages select for genetic alterations in medically relevant bacteria is important as phages become established biologics for the treatment of multidrug-resistant (MDR) bacterial infections. Before phages can be widely used as standalone or combination antibacterial therapies, we must obtain a deep understanding of the molecular mechanisms of phage infection and how host bacteria alter their genomes to become resistant. We performed coevolution experiments using a single Enterococcus faecalis strain and two distantly related phages to determine how phage pressure impacts the evolution of the E. faecalis genome. Whole-genome sequencing of E. faecalis following continuous exposure to these two phages revealed mutations previously demonstrated to be essential for phage infection. We also identified mutations in genes previously unreported to be associated with phage infection in E. faecalis. Intriguingly, there was only one shared mutation in the E. faecalis genome that was selected by both phages tested, demonstrating that infection by two genetically distinct phages selects for diverse variants. This knowledge serves as the basis for the continued study of E. faecalis genome evolution during phage infection and can be used to inform the design of future therapeutics, such as phage cocktails, intended to target MDR E. faecalis.


Assuntos
Bacteriófagos , Enterococcus faecalis , Antibacterianos , Bacteriófagos/genética , Enterococcus faecalis/genética , Genoma Viral , Genômica , Humanos
3.
PLoS One ; 16(4): e0249631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831063

RESUMO

Vancomycin-resistant enterococci (VRE) are important nosocomial pathogens that cause life-threatening infections. To control hospital-associated infections, skin antisepsis and bathing utilizing chlorhexidine is recommended for VRE patients in acute care hospitals. Previously, we reported that exposure to inhibitory chlorhexidine levels induced the expression of vancomycin resistance genes in VanA-type Enterococcus faecium. However, vancomycin susceptibility actually increased for VanA-type E. faecium in the presence of chlorhexidine. Hence, a synergistic effect of the two antimicrobials was observed. In this study, we used multiple approaches to investigate the mechanism of synergism between chlorhexidine and vancomycin in the VanA-type VRE strain E. faecium 1,231,410. We generated clean deletions of 7 of 11 pbp, transpeptidase, and carboxypeptidase genes in this strain (ponA, pbpF, pbpZ, pbpA, ddcP, ldtfm, and vanY). Deletion of ddcP, encoding a membrane-bound carboxypeptidase, altered the synergism phenotype. Furthermore, using in vitro evolution, we isolated a spontaneous synergy escaper mutant and utilized whole genome sequencing to determine that a mutation in pstB, encoding an ATPase of phosphate-specific transporters, also altered synergism. Finally, addition of excess D-lactate, but not D-alanine, enhanced synergism to reduce vancomycin MIC levels. Overall, our work identified factors that alter chlorhexidine and vancomycin synergism in a model VanA-type VRE strain.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Clorexidina/farmacologia , Sinergismo Farmacológico , Enterococcus faecium/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Ácido Láctico/metabolismo , Vancomicina/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Antibacterianos/farmacologia , Anti-Infecciosos Locais/farmacologia , Proteínas de Bactérias/genética , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...