Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Hazard Mater ; 414: 125493, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030401

RESUMO

Rapid and drastic changes in the global climate today have given a strong impetus to developing newer climate-resilient phytoremediation approaches. These methods are of great public and scientific importance given the urgency of this environmental crisis. Climate change has adverse effects on the growth, outputs, phenology, and overall productivity of plants. Contamination of soil with metal(loid)s is a major worldwide problem. Some metal(loids) are carcinogenic pollutants that have a long half-life and are non-degradable in the environment. There are many instances of the potential link between chronic heavy metal exposure and human disease. The adaptation of plants in the changing environment is, however, a major concern in phytoremediation practice. The creation of climate-resistant metal hyperaccumulation plants using molecular techniques could provide new opportunities to mitigate these problems. Consequently, advancements in molecular science would accelerate our knowledge of adaptive plant remediation/resistance and plant production in the context of global warming. Genome modification using artificial nucleases has the potential to enhance phytoremediation by modifying genomes for a sustainable future. This review focuses on biotechnology to boost climate change tolerant metallicolous plants and the future prospects of such technology, particularly the CRISPR-Cas9 genome editing system, for enhancing phytoremediation of hazardous pollutants.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Sistemas CRISPR-Cas , Humanos , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Tecnologia
2.
Environ Sci Pollut Res Int ; 24(9): 8744-8758, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28213706

RESUMO

The state of Assam in north-east India gained popularity in Asia because of discovery of oil. Pollution due to petroleum and gas exploration is a serious problem in Assam. Oil and gas exploration by various agencies in Assam resulted in soil pollution due to hydrocarbons (HCs) and heavy metals (HMs). Bioremediation gained considerable significance in addressing petroleum hydrocarbon polluted sites in various parts of the world. In this investigation, we have observed 15 species of plants belonging to grass growing on the contaminated soils. Among 15 species of grasses, 10 species with high important value index (IVI) were found to be better adapted. The highest IVI is exhibited by Axonopus compressus (21.41), and this grass can be identified as key ecological tool in the rehabilitation of the degraded site. But no definite correlation between the IVI and the biomass of the various grass existed in the study sites. Chemical study of rhizosphere (RS) and non-rhizosphere (NRS) soil of these grasses revealed both aromatic and aliphatic compounds (M.W. 178-456). Four-ring pyrene was detected in NRS soil but not in RS soil. Microbiological study of RS and NRS soil showed high colony-forming unit (CFU) of HC-degrading microbes in RS compared to NRS. The increased microbial catabolism in RS soil established the fact that pyrene is transformed to aliphatic compounds. Metals in RS soil ranged from (in mg kg-1) 222.6 to 267.3 (Cr), 854 to 956 (Pb) and 180 to 247 (Ni), but despite the very high total metal concentration in RS and NRS soil, the CaCl2-extracted metals were relatively low in RS soil (1.04 for Cr, 0.56 for Pb, 0.35 for Ni). Plants with the highest uptake of metals were Leersia hexandra (36.43 mg Cr kg-1) and Kyllinga brevifolia (67.73 mg Pb kg-1 and 40.24 mg Ni kg-1). These plant species could be potentially exploited for biomonitoring and bioremediation. Out of 15 plant species, 8 of them have high percentages of cellulose, crude fibres, lignin and holocellulose (14-16%). The explored species thus qualify as energy crops since they have high bioproductivity and are more resilient and adaptable in HM/HC-contaminated sites.


Assuntos
Metais Pesados/análise , Campos de Petróleo e Gás , Poluição por Petróleo/análise , Poaceae , Microbiologia do Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Monitoramento Ambiental , Índia , Poluição por Petróleo/prevenção & controle , Poaceae/efeitos dos fármacos , Poaceae/microbiologia , Rizosfera , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...