Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 60(8): 567-581, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101920

RESUMO

The sesquiterpene lactone parthenolide is a major component of the feverfew medicinal plant, Tanacetum parthenium. Parthenolide has been extensively studied for its anti-inflammatory and anticancer properties in several tumor models. Parthenolide's antitumor activities depend on several mechanisms but it is mainly known as an inhibitor of the nuclear factor-κB (NF-κB) pathway. This pathway is constitutively activated and induces cell survival in primary effusion lymphoma (PEL), a rare aggressive AIDS-related lymphoproliferative disorder that is commonly caused by the human herpesvirus 8 (HHV-8) infection. The aim of this study is to evaluate the targeted effect of Parthenolide both in vitro and in vivo. Herein, parthenolide significantly inhibited cell growth, induced G0 /G1 cell cycle arrest, and induced massive apoptosis in PEL cells and ascites. In addition, parthenolide inhibited the NF-ĸB pathway suppressing IĸB phosphorylation and p65 nuclear translocation. It also reduced the expression of the DNA methylase inhibitor (DNMT1). Parthenolide induced HHV-8 lytic gene expression without inhibiting latent viral gene expression. Importantly, DMAPT, the more soluble parthenolide prodrug, promoted delay in ascites development and prolonged the survival of PEL xenograft mice. This study supports the therapeutic use of parthenolide in PEL and encourages its further clinical development.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Linfoma de Efusão Primária/tratamento farmacológico , Sesquiterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Linfoma de Efusão Primária/etiologia , Linfoma de Efusão Primária/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Stem Cell Res Ther ; 9(1): 132, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751779

RESUMO

BACKGROUND: The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression and subcellular relocalization from caveolae/lipid raft microdomains (CLR-Ms) to intracellular sites may correlate with neuronal differentiation (Neu-Dif) of adipose-derived mesenchymal stem cells (ADSCs). METHODS: Human ADSCs isolated from 24 healthy donors and 24 patients with neurological disorders (ND) were cultured and induced for Neu-Dif. The mechanism of action of ATP6AP2 and the impact of its localization within the plasma membrane (particularly CLR-Ms) and intracellular sites on several pathways (mitogen-activated protein kinase, Wnt(s) signaling and others) and intracellular calcium and exosome release were evaluated. The impact of CLR-Ms on ATP6AP2 or vice versa was determined by pharmacological disruption of CLR-Ms or siATP6AP2 assays. RESULTS: In patients with ND, loss of ATP6AP2 from CLR-Ms correlated with an inhibition of Neu-Dif and signaling. However, its relocalization in CLR-Ms was positively correlated to induction of Neu-Dif in healthy subjects. An apparent switch from canonical to noncanonical Wnt signaling as well as from caveolin to flotillin occurs concurrently with the increases of ATP6AP2 expression during neurogenesis. Stimulation by renin activates ERK/JNK/CREB/c-Jun but failed to induce ß-catenin. Wnt5a enhanced the renin-induced JNK responsiveness. Gα proteins crosslink ATP6AP2 to caveolin where a switch from Gαi to Gαq is necessary for Neu-Dif. In ATP6AP2-enriched CLR-Ms, the release of exosomes was induced dependently from the intracellular Ca2+ and Gαq. Pharmacological disruption of CLR-M formation/stability impairs both ATP6AP2 localization and Neu-Dif in addition to reducing exosome release, indicating an essential role of ATP6AP2 enrichment in CLR-Ms for the induction of Neu-Dif. The mechanism is dependent on CLR-M dynamics, particularly the membrane fluidity. Knockdown of ATP6AP2 inhibited Neu-Dif but increased astrocytic-Dif, depleted ATP6AP2/flotillin/Gαq but accumulated caveolin/Gαi in CLR-Ms, and blocked the activation of JNK/ERK/c-Jun/CREB/exosome release. siATP6AP2 cells treated with sphingomyelinase/methyl-ß-cyclodextrin reversed the levels of caveolin/flotillin in CLR-Ms but did not induce Neu-Dif, indicating the crucial relocalization of ATP6AP2 in CLR-Ms for neurogenesis. Treatment of ND-derived cells with nSMase showed reversibility in ATP6AP2 abundance in CLR-Ms and enhanced Neu-Dif. CONCLUSIONS: This study gives evidence of the determinant role of CLR-M ATP6AP2 localization for neuronal and oligodendrocyte differentiation involving mechanisms of switches from Gαi/caveolin/canonical to Gαq/flotillin/PCP, the ERK/JNK pathway and Ca2+-dependent release of exosomes and as a potential target of drug therapy for neurodegenerative disorders.


Assuntos
Cavéolas/metabolismo , Receptores de Superfície Celular/metabolismo , Células-Tronco/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Humanos , Pessoa de Meia-Idade , Transdução de Sinais
3.
Anticancer Drugs ; 26(1): 74-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25192452

RESUMO

Prostate cancer is the most common malignant cancer in men and the second leading cause of cancer deaths. Previously, we have shown that 2'-hydroxy-4-methylsulfonylchalcone (RG003) induced apoptosis in prostate cancer cell lines PC-3 and DU145. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent, some cancer cells are resistant to TRAIL treatment. PC-3 and LNCaP prostatic cancer cell lines have been reported to be resistant to TRAIL-induced apoptosis. Here, we show for the first time that RG003 overcomes TRAIL resistance in prostate cancer cells. RG003 can enhance TRAIL-induced apoptosis through DR5 upregulation and downregulation of Bcl-2, PI3K/Akt, NF-κB, and cyclooxygenase-2 (COX-2) survival pathways. When used in combined treatment, RG003 and TRAIL amplified TRAIL-induced activation of apoptosis effectors and particularly activation of caspase-8 and the executioner caspase-3, leading to increased poly-ADP-ribose polymerase cleavage and DNA fragmentation in prostate cancer cells. Furthermore, we showed that RG003 reduced COX-2 expression in cells. Previously, we showed that COX-2 was involved in resistance to an apoptosis mechanism; then, its inhibition by RG003 could render cells more sensitive to TRAIL treatment. We showed that nuclear factor-κB activation was inhibited after RG003 treatment. This inhibition was correlated with reduction in COX-2 expression and induction of apoptosis. Overall, we conclude, for the first time, that RG003 can enhance TRAIL-induced apoptosis in human prostate cancer cells. The significance of our in-vitro study with RG003 and TRAIL combined is very encouraging, suggesting the relevance of testing this combined treatment in xenograft animal models.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Neoplasias da Próstata/patologia , Sulfonas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Masculino , NF-kappa B/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
4.
Int J Oncol ; 43(4): 1160-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877542

RESUMO

Limited success has been achieved in extending the survival of patients with metastatic and hormone-refractory prostate cancer (HRPC). There is a strong need for novel agents in the treatment and prevention of HRPC. In the present study, the apoptotic mechanism of action of RG003 (2'-hydroxy-4-methylsulfonylchalcone) and RG005 (4'-chloro-2'-hydroxy-4-methylsulfonylchalcone) in association with intracellular signalling pathways was investigated in the hormone-independent prostate carcinoma cells PC-3 and DU145. We showed that these compounds induced apoptosis through the intrinsic pathway but not through the extrinsic one. We showed that synthetic chalcones induced an activation of caspase-9 but not caspase-8 in PC-3 cells. Even if both chalcones induced apoptosis in PC-3 cells, a dominant effect of RG003 treatment was observed resulting in a disruption of ∆ψm, caspase-9 and caspase-3 activation, PARP cleavage and DNA fragmentation. Furthermore, in regard to our results, it is clear that the simultaneous inhibition of Akt and NF-κB signalling can significantly contribute to the anticancer effects of RG003 and RG005 in PC-3 prostate cancer cells. NF-κB inhibition was correlated with the reduction of COX-2 expression and induction of apoptosis. Our results clearly indicate for the first time that RG003 and RG005 exert their potent anti­proliferative and pro-apoptotic effects through the modulation of Akt/NF-κB/COX-2 signal transduction pathways in PC-3 prostate cancer cells with a dominant effect for RG003.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/genética , Caspase 9/genética , Chalconas/administração & dosagem , Poli(ADP-Ribose) Polimerases/metabolismo , Sulfonas/administração & dosagem , Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células , Chalconas/química , Ciclo-Oxigenase 2/metabolismo , Fragmentação do DNA , Humanos , Masculino , NF-kappa B/metabolismo , Proteína Oncogênica v-akt/metabolismo , Neoplasias da Próstata , Transdução de Sinais , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...