Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 103(1): e14365, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37749066

RESUMO

A mannose-binding protein from the mushroom Agaricus bisporus (Abmb) inhibits the growth of MDA-MB-231 cells, which is of an aggressive breast cancer subtype. This ability was observed in a monolayer cell (2D) culture setup, which often is unable to capture changes in cell morphology, polarity and division. That shortcoming may overestimate Abmb potency for its development as a pharmaceutical agent and its use in a therapy. Hence, Abmb's inhibition to the cell growth was performed in the 3D cell (spheroid) culture, which is more representative to the situation in vivo. The result showed that, although the presence of Abmb at ~14.7 µM already disrupted the MDA-MB-231 cell morphology in the 2D culture, its presence at ~16.5 µM only ceased the growth of the MDA-MB-231 spheroid. Further, Abmb is unique because structurally it belongs to the R-type lectin (RTL) family; most of mannose-binding protein is of the C-type lectin (CTL). As the natural ligand of Abmb is unknown thus the mechanism of action is unclear, Abmb effect on the cancer cells was assessed via observation of the altered expression of genes involved in the Wnt/ß-catenin signalling, which is one of the canonical pathways in the proliferation of cancer cells. The results suggested that Abmb did not alter the pathway upon exerting its anti-proliferative activity to the MDA-MB-231 cells.


Assuntos
Agaricus , Neoplasias da Mama , Lectina de Ligação a Manose , Humanos , Feminino , Lectina de Ligação a Manose/farmacologia , Lectinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
2.
Protein J ; 40(4): 554-561, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33959874

RESUMO

Agaricus bisporus mannose-binding protein (Abmb) was discovered as part of mushroom tyrosinase (PPO3) complex. Apart from its presence, nothing is known about its function or activity in the mushroom. The protein is evolutionarily related to lectins with ß-trefoil fold, which are glucose or galactose (and their derivatives) binding proteins. Abmb is also recently showed to display the typical agglutination activity of lectin when in complex with PPO3; this further supports Abmb similarity to its structural homologs from lectin with ß-trefoil fold. However, Abmb has no affinity towards glucose or galactose but for mannose, thus its binding to the sugar may be different from its homologs. To date, the natural ligand of Abmb is unknown and the structure of Abmb in the presence of a ligand is not available. Therefore, the mannose-binding site of Abmb was predicted using molecular docking, which was consulted with the information from its structural homologs. This conservative approach would prevent over-speculation. The mannose-binding site of Abmb is likely located in the same region to that of Abmb structural homologs but with a shift in position due to the presence of additional surface loop. In addition, benefiting from the information from an in vitro study on Abmb sugar specificity, the mannose poses suggested that the sugar might interact with the side chains of Arg15, Thr45, Gln48, Asp49, Asp51 and Arg51. Most of these residues were equally present in Abmb structural homologs despite variation of their positions in the amino acid sequence. The variation probably originates from alteration of its amino acid sequence during evolution.


Assuntos
Agaricus/química , Proteínas Fúngicas/química , Lectina de Ligação a Manose/química , Dobramento de Proteína , Sítios de Ligação , Conformação Proteica em Folha beta
3.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443732

RESUMO

The mushroom Agaricus bisporus secretes biologically active compounds and proteins with benefits for human health. Most reported proteins from A. bisporus are tyrosinases and lectins. Lectins are of therapeutic or pharmaceutical interest. To date, only limited information is available on A. bisporus lectins and lectin-like proteins. No therapeutic products derived from A. bisporus lectin (ABL) are available on the market despite its extensive exploration. Recently, A. bisporus mannose-binding protein (Abmb) was discovered. Its discovery enriches the information and increases the interest in proteins with therapeutic potential from this mushroom. Furthermore, the A. bisporus genome reveals the possible occurrence of other lectins in this mushroom that may also have therapeutic potential. Most of these putative lectins belong to the same lectin groups as ABL and Abmb. Their relationship is discussed. Particular attention is addressed to ABL and Abmb, which have been explored for their potential in medicinal or pharmaceutical applications. ABL and Abmb have anti-proliferative activities toward cancer cells and a stimulatory effect on the immune system. Possible scenarios for their use in therapy and modification are also presented.


Assuntos
Agaricus/química , Lectinas/genética , Lectina de Ligação a Manose/genética , Monofenol Mono-Oxigenase/genética , Agaricus/genética , Genoma Fúngico/genética , Humanos , Lectinas/uso terapêutico , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/uso terapêutico , Monofenol Mono-Oxigenase/química
4.
Biol Pharm Bull ; 41(12): 1837-1842, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30259884

RESUMO

We show that a lectin like protein from the mushroom Agaricus bisporus (LSMT) is capable to permeate the epithelial monolayer barrier of the intestine ex vivo. The protein is not toxic or immunogenic upon prolonged administration and elevated dose in mice. Thus, it could be a candidate as a drug carrier for oral administration. However, its permeability should be tested after the protein has been modified, mimicking the condition in which it is used as a drug carrier. The protein was conjugated to captopril, the selected model of a Biopharmaceutical Classification System (BCS) class III drug, with high solubility but poor permeability. The drug was conjugated to LSMT that had been modified with 4-succinimidyloxycarbonyl-alpha-methyl-2-pyridyldithiotoluene (SMPT) as a linker. The success of LSMT modification was confirmed with TLC and MS; the latter also indicated the amount of captopril molecule linked. The modified LSMT could permeate through the intestinal monolayer barrier, and thus could be absorbed in the intestine after modification. The modified protein appears to remain stable after incubation in simulated gastrointestinal fluids. This pioneering work provides an essential basis for further development of the protein as a drug carrier for oral administration.


Assuntos
Agaricus , Captopril/química , Portadores de Fármacos/química , Monofenol Mono-Oxigenase/química , Administração Oral , Agaricales/metabolismo , Agaricus/metabolismo , Células CACO-2 , Captopril/administração & dosagem , Captopril/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Ácido Gástrico/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Monofenol Mono-Oxigenase/administração & dosagem , Monofenol Mono-Oxigenase/metabolismo
5.
Enzyme Microb Technol ; 118: 13-19, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30143194

RESUMO

Manganese superoxide dismutase from Staphylococcus equorum (MnSODSeq) maintains its activity after up to 45 minutes of UVC radiation. The enzyme occurs in a dimeric form that likely contributes to its activity and stability. Therefore, maintaining the dimeric form could be a way to improve the enzyme's stability. One of the main interactions for dimer formation occurs between Tyr168 and His31, of which the latter is also involved in the enzymatic reaction. UVC radiation may cause alterations in the electronic structure of the phenolic ring in the Tyr168 side chain: this may disrupt the Tyr168-His31 pairing and lead to enzyme instability and/or activity loss. In this report, a Leu169Trp substitution was carried out to protect the Tyr168 residue by introducing an amino acid with an aromatic side chain for better photon absorption of the UV light. Interestingly, although the substitution appeared to have a minor effect on enzyme stability and activity upon UVC irradiation, the melting temperature (TM) of the Leu169Trp mutant was different. Unlike the native protein, the TM of the mutant had not changed after UV irradiation. Thus, our effort to extend the resistance to UVC radiation was not successful, but we have discovered a biologically active new form. The present finding provides evidence that MnSODSeq maintains most of its activity and resistance to UVC irradiation as long as the dimer and its glutamate-bridge are intact, despite an alteration that destabilizes its monomeric structure. The present finding further unravels the relationship between the structure of the enzyme and its activity. Furthermore, the results may provide further insight in how to modify the enzyme to improve its characteristics for application in medicine or cosmetics.


Assuntos
Substituição de Aminoácidos , Mutação , Tolerância a Radiação , Staphylococcus/enzimologia , Superóxido Dismutase/metabolismo , Raios Ultravioleta/efeitos adversos , Sítios de Ligação , Estabilidade Enzimática , Leucina/química , Leucina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Staphylococcus/genética , Staphylococcus/efeitos da radiação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Triptofano/química , Triptofano/genética
6.
Sci Pharm ; 84(1): 203-17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110510

RESUMO

A lectin-like protein of unknown function designated as LSMT was recently discovered in the edible mushroom Agaricus bisporus. The protein shares high structural similarity to HA-33 from Clostridium botulinum (HA33) and Ricin-B-like lectin from the mushroom Clitocybe nebularis (CNL), which have been developed as drug carrier and anti-cancer, respectively. These homologous proteins display the ability to penetrate the intestinal epithelial cell monolayer, and are beneficial for oral administration. As the characteristics of LSMT are unknown, a structural study in silico was performed to assess its potential pharmaceutical application. The study suggested potential binding to target ligands such as HA-33 and CNL although the nature, specificity, capacity, mode, and strength may differ. Further molecular docking experiments suggest that interactions between the LSMT and tested ligands may take place. This finding indicates the possible use of the LSMT protein, initiating new research on its use for pharmaceutical purposes.

7.
Appl Biochem Biotechnol ; 170(1): 44-57, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23468006

RESUMO

α-Amylase catalyzes hydrolysis of starch to oligosaccharides, which are further degraded to simple sugars. The enzyme has been widely used in food and textile industries and recently, in generation of renewable energy. An α-amylase from yeast Saccharomycopsis fibuligera R64 (Sfamy) is active at 50 °C and capable of degrading raw starch, making it attractive for the aforementioned applications. To improve its characteristics as well as to provide information for structural study ab initio, the enzyme was chemically modified by acid anhydrides (nonpolar groups), glyoxylic acid (GA) (polar group), dimethyl adipimidate (DMA) (cross-linking), and polyethylene glycol (PEG) (hydrophilization). Introduction of nonpolar groups increased enzyme stability up to 18 times, while modification by a cross-linking agent resulted in protection of the calcium ion, which is essential for enzyme activity and integrity. The hydrophilization with PEG resulted in protection against tryptic digestion. The chemical modification of Sfamy by various modifiers has thereby resulted in improvement of its characteristics and provided systematic information beneficial for structural study of the enzyme. An in silico structural study of the enzyme improved the interpretation of the results.


Assuntos
Proteínas Fúngicas/química , Engenharia de Proteínas/métodos , Saccharomycopsis/química , alfa-Amilases/química , Anidridos Acéticos/química , Sequência de Aminoácidos , Quelantes/química , Reagentes de Ligações Cruzadas/química , Dimetil Adipimidato/química , Estabilidade Enzimática , Glioxilatos/química , Temperatura Alta , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Polietilenoglicóis/química , Proteólise , Saccharomycopsis/enzimologia , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...