Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Glob Health ; 8(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36707093

RESUMO

Unexpected pathogen transmission between animals, humans and their shared environments can impact all aspects of society. The Tripartite organisations-the Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO), and the World Organisation for Animal Health (WOAH)-have been collaborating for over two decades. The inclusion of the United Nations Environment Program (UNEP) with the Tripartite, forming the 'Quadripartite' in 2021, creates a new and important avenue to engage environment sectors in the development of additional tools and resources for One Health coordination and improved health security globally. Beginning formally in 2010, the Tripartite set out strategic directions for the coordination of global activities to address health risks at the human-animal-environment interface. This paper highlights the historical background of this collaboration in the specific area of health security, using country examples to demonstrate lessons learnt and the evolution and pairing of Tripartite programmes and processes to jointly develop and deliver capacity strengthening tools to countries and strengthen performance for iterative evaluations. Evaluation frameworks, such as the International Health Regulations (IHR) Monitoring and Evaluation Framework, the WOAH Performance of Veterinary Services (PVS) Pathway and the FAO multisectoral evaluation tools for epidemiology and surveillance, support a shared global vision for health security, ultimately serving to inform decision making and provide a systematic approach for improved One Health capacity strengthening in countries. Supported by the IHR-PVS National Bridging Workshops and the development of the Tripartite Zoonoses Guide and related operational tools, the Tripartite and now Quadripartite, are working alongside countries to address critical gaps at the human-animal-environment interface.


Assuntos
Saúde Única , Animais , Humanos , Organização Mundial da Saúde , Saúde Global , Nações Unidas , Regulamento Sanitário Internacional
2.
ISRN Vet Sci ; 2013: 389186, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24198969

RESUMO

It is known that pigs raised in enriched environments express less aggressive behaviour. For this reason, a new method of cognitive environmental enrichment was experimented at the University of Veterinary Medicine Hannover, Germany. In the first phase, 78 suckling piglets were trained to learn the link between a sound given by an electronic feeder and a feed reward in the form of chocolate candies during a period of 8 days. In the second phase, the same piglets were used in resident-intruder tests to verify the potential of the feeding system to interrupt aggressive behaviour. The analysis of all training rounds revealed that piglets learned the commands during 8 days of training and the interest of the piglets increased within training days (P < 0.05). In the resident-intruder test, 79.5% of aggressive interactions were broken by feeder activation. In interactions where either the aggressor or the receiver reacted, a high number of fights were stopped (96.7% versus 93.1%) indicating that it was not relevant if the aggressor or the receiver responded to the feeder activation. We conclude that the electronic feeding system has the potential to be used as cognitive enrichment for piglets, being suitable for reducing aggressive behaviour in resident-intruder situations.

3.
Berl Munch Tierarztl Wochenschr ; 126(3-4): 104-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23540192

RESUMO

One of the largest animal welfare problems in modern pig production is tail biting. This abnormal behaviour compromises the well-being of the animals, can seriously impair animal health and can cause considerable economic losses. Tail biting has a multifactorial origin and occurs mainly in fattening pigs. High stocking densities, poor environment and bad air quality are seen as important factors. However, it is presumed that a plurality of internal and external motivators in intensive pig production can trigger this behaviour which is not reported in sounders of wild boars. The aim of this review is to summarize the causes and the effects of tail biting in pigs and present management strategies that are likely to reduce its incidence. In particular, management strategies by applying Precision Livestock Farming (PLF) technologies to monitor and control the behaviour of the pigs may be suitable to detect the outbreaks of tail biting at an early stage so that counter measures can be taken in time.


Assuntos
Agressão/fisiologia , Criação de Animais Domésticos/métodos , Bem-Estar do Animal/normas , Mordeduras e Picadas/veterinária , Abrigo para Animais/normas , Sus scrofa/lesões , Cauda/lesões , Criação de Animais Domésticos/normas , Animais , Comportamento Animal/fisiologia , Suínos
4.
Berl Munch Tierarztl Wochenschr ; 126(3-4): 113-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23540193

RESUMO

The aim of this study was to identify, quantify, and describe pre-signs of aggression in pigs and the early stages of aggressive interactions. The experiment was carried out at a commercial farm on a group of 11 male pigs weighing on average 23 kg and kept in a pen of4 m x 2.5 m. In total 8 hours were videorecorded during the first 3 days after mixing. As a result, 177 aggressive interactions were identified and labelled to find pre-sign body positions before aggressive interactions, attack positions and aggressive acts performed from these positions. A total of 12 positions were classified as pre-signs (P1-P12) and 7 of them were identified immediately at the start of aggressive interactions (P6-P12). Most common pre-sign positions were P3-pigs approaching and facing each other (24%) and P2-initiator pigs approaching from the lateral side (18%). In 80% of the cases the duration of pre-signs was 1-2 sec 72% of all aggressive interactions were short (1 to 10 sec). The most frequent attack positions were P12-inverse parallel (39.5%), P7-nose to nose, 90 degrees (19.77%) and P9-nose to head (13.5%). The most frequent aggressive acts from attack positions were head knocking (34.4%), pressing (34.4%) and biting of different body parts (29.4%). Head knocking was mostly observed in relation to P7 and P2 positions and biting was common in the P7 position. In conclusion, pigs adopt specific pre-signs and body positions before the escalation of aggressive interactions. This could be used as potential sign to identify a beginning aggression.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Postura/fisiologia , Sus scrofa/fisiologia , Gravação em Vídeo/métodos , Animais , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...