Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444921

RESUMO

Three-dimensional printing with cement-based materials is a promising manufacturing technique for civil engineering applications that already allows for the design and the construction of complex and highly customized structures using a layer-by-layer deposition approach. The extrusion mechanism is one of the most expensive parts of the 3D printer. Also, for low-scale 3D printers, based on the shape of the extruder and the geometry limitation of the mixing blade, the 3D mixture is often limited to a narrow range of materials due to the risk of layer splitting or blockage. Therefore, there is a need to develop affordable and feasible alternatives to the current design-fabrication-application approach of 3D printers. In this paper, various newly designed mixtures of fiber-reinforced mortars that can be 3D printed using only a commercially available screw pump are analyzed based on their fresh properties and mechanical characteristics. The results, in terms of extrudability, buildability, flowability, and flexural and compressive strengths, highlight the potential of using this technology for constructing complex structures with high strength and durability. Also, the reduced facility requirements of this approach enable 3D printing to be made more available for civil engineering applications. With further innovations to come in the future, this method and these mixtures can be extended for the sustainable and economically feasible printing of single-family housing units.

2.
Materials (Basel) ; 15(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234261

RESUMO

The global effort to reduce energy consumption generated by buildings involves the increasing use of thermal insulation materials, with expanded polystyrene representing one of the most used materials to this end. The thermal performance of expanded polystyrene has been extensively studied; however, information on the effect of exposure to cyclic environmental conditions on its thermal performance is limited. Therefore, we conducted such a study, which is presented in this article. In the first stage, samples were subjected to 28 days of preconditioning to accelerate the increase in moisture in the material. The second stage involved exposure to 40 freeze-thaw cycles of 12 h each. The weight and thermal conductivity of the samples were measured before and after exposure, and the compression behavior was also analyzed. The results show a decrease in the thermal performance of expanded polystyrene exposed to cyclic environmental conditions, as demonstrated by an increase in the water content of the material under the same measurement conditions and an increase of 5.06% in the average thermal conductivity. The influence of this increase on the thermal performance of commonly used wall construction elements was also been studied and presented in this article. A decrease of 7.59% in the compressive stress of the material at 10% strain was also demonstrated.

3.
Materials (Basel) ; 15(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295245

RESUMO

Cultural and religious heritage assessments and restorations are considered to be a fundamental requirement of any modern society because these constructions represent one of the most meaningful and tangible connections to our past. With rare exceptions, heritage buildings were built with materials and systems that could bear gravitational loads but not bending and shearing resulting from seismic loading. Thus, in many cases, earthquake ground motions have led to severe degradation and even the collapse of various parts of these structural systems. In order to address these issues, repair and replacement techniques are applied as common parts of restoration work. In the peculiar case of stone masonry structures, a standalone macroscopic examination is not self-assured and, most often, can lead to an inadequate selection of a replacement material. Therefore, a knowledge of mesoscopic, petrographic, physical and mechanical properties is compulsory in the design, planning and execution of restoration work. From this perspective, the present research has taken, as a case of study, the Frumoasa monastic complex from Iași, Romania, introducing microscopic, XRF (X-ray fluorescence) spectroscopy and petrographically based approaches, comparing three limestone samples with a sample dislodged from the original wall. The physical properties (bulk and real densities, open porosity and capillary water absorption coefficient) and the mechanical properties (compressive and tensile strengths) were also experimentally determined. The samples were extracted from stone quarries located on the territories that were part of the same historical region as the Frumoasa monastic complex. Based on the outcomes of this study, suitable criteria for the stone replacement-consisting of identifying the main structure, quarry rock petrographical parameters and physical and mechanical characteristics-were determined and applied.

4.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744149

RESUMO

Squared hollow steel profiles are commonly used in the construction of offshore structures or building facades. By welding two or more pipes, typical joints are created that are specific for different areas of applications. These joints are less resistant than straight pipes due to the geometrical heterogeneity and the complex stress behavior of the welding. Standards define these joints, but there are restrictions imposed regarding the material or geometry. This paper focused on full-overlapped joints with squared hollow section profiles and on-top connection, which are disregarded in current standards. The aim was to figure out the influence of the inclination angle on the resistance of the joint. In the analysis, experimental and numerical studies were performed. Four different inclination angles commonly used on construction sites were the focus. It was discovered that there is a total diminishment of 46% in the load bearing capacity between the steepest and the most obtuse angles. The structural behavior is non-linear and is influenced by the value of the angles. The second aspect is related to the influence of the steel profile, which is evaluated by a comparison between a squared profile and two circular profiles. It was discovered that the joint made with squared profiles has a higher bearing capacity than the one made with circular profiles, a statement valid for similar thicknesses of the elements.

5.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591497

RESUMO

The greatest advantage of fiber-reinforced composite materials is the freedom to tailor their strength and stiffness properties, while the most significant disadvantage consists in their high costs. Therefore, the design process and especially the optimization phase becomes an important step. The geometry of the fabric of each lamina as well as their stacking sequence need to be carefully defined, starting from some basic geometric variables. The input parameters are the widths and the heights of the tows, the laminate-stacking sequence and the gaps between two successive tows or the height of the neat matrix. This paper is a follow-up to a previous work on using and improving an in-house software called SOMGA (Satin Optimization with a Modified Genetic Algorithm), aimed to optimize the geometrical parameters of satin-reinforced multi-layer composites. The final goal is to find out the way in which various types of woven fabrics can affect the best possible solution to the problem of designing a composite material, able to withstand a given set of in-plane loads. The efficiency of the composite structure is evaluated by its ultimate strains using a fitness function that analyses and compares the mechanical behavior of different fabric-reinforced composites. Therefore, the ultimate strains corresponding to each configuration are considered intermediate data, being analyzed comparatively until obtaining the optimal values. When the software is running, for each analysis step, a set of intermediate values is provided. However, the users do not have to store these values, because the final result of the optimization directly provides the composite configuration with maximum efficiency, whose structural response meets the initially imposed loading conditions. To illustrate how the SOMGA software works, six different satin-woven-fabric-reinforced composites, starting from plain weave (satin 2/1/1), then satin 3/1/1, satin 4/1/1, satin 5/1/1, satin 5/2/1 and finally satin 5/3/1, were evaluated in the SOMGA interface. The results were rated against each other in terms of the composite efficiency and the case characterized by minimal reinforcement undulation (thinnest laminate) were highlighted.

6.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591513

RESUMO

Steel hollow section joints are mainly used for offshore structures, hall support or trusses. Current standards define different kinds of steel joints, but there are limitations regarding the geometry or load scenarios. Excluded joints are full-overlapped Y-joints with on-top connection. For these kinds of joints, there is no general design fundamental, so the design engineer has to build his/her own model. The aim of this paper is to figure out the resistance of this special undefined joint type and the influence of the inclination angle between the pipes. An experimental and numerical analysis of this joint was done. Due to this evaluation of the inclination angle, the design engineer could optimize the structure economically. Two different circular profile types were focused on. It was concluded that by increasing the inclination angle, the total applicable force decreased non-linearly. On one hand, the most economic design was achieved by choosing a steep angle. On the other hand, the resistance of the structure, regarding the maximum appliable force, could be increased. For the system in this paper, an increase up to 47% was achieved by choosing a profile with a thickness of 2.8 mm instead of 2.0 mm.

7.
Materials (Basel) ; 15(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591667

RESUMO

Steel joints made out of circular hollow section profiles are used for many fields of applications, such as wide-span or representative halls for airports. By connecting two inclined pipes to a vertical third pipe, a ramified vertical column is created, where the node is the weakest point in the structure due to the geometrical heterogeneity. The current standards and Design Codes have limitations regarding the geometrical properties of hollow sections joints. However, the kind of steel joint presented in this paper is excluded in the current standards. This paper is about numerical FEA case studies of two-dimensional, circular hollow-section joints to figure out the resistance of atypical steel joints. In the first step, a small-scale model is generated to analyze the influence of the inclination. In the second step, the geometries of the different pipes are extended. The influence of the inclination angle and the stability of the joint are analyzed. It was discovered that the inclination angle between the three pipes has a large influence on the stresses and deflections at the node. By increasing the inclination angle, the maximum applied force can be increased. The extended members change the behavior and the stress distribution.

8.
Materials (Basel) ; 15(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057360

RESUMO

Fly ash wastes (silica, aluminum and iron-rich materials) could be smartly valorized by their incorporation in concrete formulation, partly replacing the cement. The necessary binding properties can be accomplished by a simple procedure: an alkali activation process, involving partial hydrolysis, followed by gel formation and polycondensation. The correlations between the experimental fly ash processing conditions, particle characteristics (size and morphology) and the compressive strength values of the concrete prepared using this material were investigated by performing a parametric optimization study to deduce the optimal processing set of conditions. The alkali activation procedure included the variation of the NaOH solutions concentration (8-12 M), temperature values (25-65 °C) and the liquid/solid ratio (1-3). The activation led to important modifications of the crystallography of the samples (shown by powder XRD analysis), their morphologies (seen by SEM), particle size distribution and Blaine surface values. The values of the compressive strength of concrete prepared using fly ash derivatives were between 16.8-22.6 MPa. Thus, the processed fly ash qualifies as a proper potential building material, solving disposal-associated problems, as well as saving significant amounts of cement consumed in concrete formulation.

9.
Materials (Basel) ; 14(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34772248

RESUMO

This paper presents the outcomes of an experimental and numerical study performed on epoxy-bonded single lap joints (SLJs) between carbon fiber-reinforced polymer (CFRP) composite strips and steel elements. For the experimental program, 34 specimens were prepared by varying the type of the composite strip and the type of adhesives and their thicknesses; all specimens were loaded in axial tension up to failure. The specific failure mechanisms were identified and commented on the basis of the performed tests, and the load-displacement curves were plotted. Additionally, the strain distributions along the bond lengths at different load stages, the shear stress-displacements (slip) variations and the stress-strain distributions for the CFRP strips were plotted and investigated. The numerical simulations, based on 3D finite element method (FEM) analysis, provided consistent results, in good agreement with the experimental ones for all parameters that were investigated and discussed in this paper.

10.
Materials (Basel) ; 14(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832431

RESUMO

This study presents the results of an experimental and numerical program carried out on unreinforced masonry panels strengthened by textile-reinforced mortar (TRM) plastering. For this purpose, five panels were constructed, instrumented and tested in diagonal shear mode. Two panels were tested as reference. The first reference panel was left unstrengthened, while the second one was strengthened by a traditional self-supporting cement mortar matrix reinforced with steel meshes. The remaining three panels were strengthened by TRM plastering applied on one or both faces and connected with transversal composite anchors. The numerical and the experimental results evidenced a good effectiveness of the TRM systems, especially when applied on both panel facings.

11.
Materials (Basel) ; 14(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683668

RESUMO

The global demand for fiber-based products is continuously increasing. The increased consumption and fast fashion current in the global clothing market generate a significant quantity of pre-and post-production waste that ends up in landfills and incinerators. The present study aims to obtain a new waste-based composite material panel for construction applications with improved mechanical properties that can replace traditional wood-based oriented strand boards (OSB). The new composite material is formed by using textile wastes as a reinforcement structure and a combination of bi-oriented polypropylene films (BOPP) waste, polypropylene non-woven materials (TNT) waste and virgin polypropylene fibers (PP) as a matrix. The mechanical properties of waste-based composite materials are modeled using the Taguchi method based on orthogonal arrays to maximize the composite characteristics' mechanical properties. Experimental data validated the theoretical results obtained.

12.
Materials (Basel) ; 14(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807383

RESUMO

Solving the environmental problems and the economic aspects of the construction sector represent a global priority. The considerable quantities of raw materials and the energy consumed by this sector make it one of the most polluting economic activities. Fiberglass in various forms is widely used in the construction sector. In the manufacturing process and during the usage of fiberglass products, a significant amount of indestructible waste results, negatively impacting the environment. An innovative solution for utilizing this type of waste is the treatment with hydrogen plasma. This process results in two products: the first in the gaseous state used to obtain synthetic fuel and the second in solid-state, named slag. The composition of solid waste contains chemical compounds that can increase their strength if used as additives in mortars or concretes. This study presents the laboratory tests on mortars, in which a part of the cement amount was replaced with the solid component resulting from the plasma treatment of glass fiber waste. The results showed that replacing a part of the cement with these materials is a solution that minimizes the ecological footprint of the buildings.

13.
Artigo em Inglês | MEDLINE | ID: mdl-28257069

RESUMO

During the last two decades, the number of macrocell mobile telephony base station antennas emitting radiofrequency (RF) electromagnetic radiation (EMR) in residential areas has increased significantly, and therefore much more attention is being paid to RF EMR and its effects on human health. Scientific field measurements of public exposure to RF EMR (specifically to radio frequency radiation) from macrocell mobile telephony base station antennas and RF electromagnetic field (EMF) intensity parameters in the environment are discussed in this article. The research methodology is applied according to the requirements of safety norms and Lithuanian Standards in English (LST EN). The article presents and analyses RF EMFs generated by mobile telephony base station antennas in areas accessible to the general public. Measurements of the RF electric field strength and RF EMF power density were conducted in the near- and far-fields of the mobile telephony base station antenna. Broadband and frequency-selective measurements were performed outside (on the roof and on the ground) and in a residential area. The tests performed on the roof in front of the mobile telephony base station antennas in the near-field revealed the presence of a dynamic energy interaction within the antenna electric field, which changes rapidly with distance. The RF EMF power density values on the ground at distances of 50, 100, 200, 300, 400, and 500 m from the base station are very low and are scattered within intervals of 0.002 to 0.05 µW/cm². The results were compared with international exposure guidelines (ICNIRP).


Assuntos
Telefone Celular , Campos Eletromagnéticos , Radiação Eletromagnética , Exposição Ambiental/análise , Habitação , Humanos , Lituânia , Segurança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...