Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 102(13): 136402, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19392377

RESUMO

We have studied electrostatic field-induced doping in La0.8Ca0.2MnO3 transistors using electrolyte as a gate dielectric. For positive gate bias, electron doping drives a transition from a ferromagnetic metal to an insulating ground state. The thickness of the electrostatically doped layer depends on bias voltage but can extend to 5 nm requiring a field doping of 2x10;{15} charges per cm;{2} equivalent to 2.5 electrons per unit cell area. In contrast, negative gate voltages enhance the metallic conductivity by 30%.

2.
Nat Mater ; 5(11): 881-6, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17028576

RESUMO

Spin glasses are founded in the frustration and randomness of microscopic magnetic interactions. They are non-ergodic systems where replica symmetry is broken. Although magnetic glassy behaviour has been observed in many colossal magnetoresistive manganites, there is no consensus that they are spin glasses. Here, an intriguing glass transition in (La,Pr,Ca)MnO3 is imaged using a variable-temperature magnetic force microscope. In contrast to the speculated spin-glass picture, our results show that the observed static magnetic configuration seen below the glass-transition temperature arises from the cooperative freezing of the first-order antiferromagnetic (charge ordered) to ferromagnetic transition. Our data also suggest that accommodation strain is important in the kinetics of the phase transition. This cooperative freezing idea has been applied to structural glasses including window glasses and supercooled liquids, and may be applicable across many systems to any first-order phase transition occurring on a complex free-energy landscape.

3.
Science ; 298(5594): 805-7, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12242450

RESUMO

Upon cooling, the isolated ferromagnetic domains in thin films of La0.33Pr0.34Ca0.33MnO3 start to grow and merge at the metal-insulator transition temperature TP1, leading to a steep drop in resistivity, and continue to grow far below TP1. In contrast, upon warming, the ferromagnetic domain size remains unchanged until near the transition temperature. The jump in the resistivity results from the decrease in the average magnetization. The ferromagnetic domains almost disappear at a temperature TP2 higher than TP1, showing a local magnetic hysteresis in agreement with the resistivity hysteresis. Even well above TP2, some ferromagnetic domains with higher transition temperatures are observed, indicating magnetic inhomogeneity. These results may shed more light on the origin of the magnetoresistance in these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...