Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 4(11): 1591-1609, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163831

RESUMO

Patients with nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) commonly develop atherosclerosis through a mechanism that is not well delineated. These diseases are associated with steatosis, inflammation, oxidative stress, and fibrosis. The role of insulin resistance in their pathogenesis remains controversial. Albumin (Alb)Cre+ Cc1flox ( fl ) /fl mice with the liver-specific null deletion of the carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1; alias Cc1) gene display hyperinsulinemia resulting from impaired insulin clearance followed by hepatic insulin resistance, elevated de novo lipogenesis, and ultimately visceral obesity and systemic insulin resistance. We therefore tested whether this mutation causes NAFLD/NASH and atherosclerosis. To this end, mice were propagated on a low-density lipoprotein receptor (Ldlr) -/- background and at 4 months of age were fed a high-cholesterol diet for 2 months. We then assessed the biochemical and histopathologic changes in liver and aortae. Ldlr-/-AlbCre+Cc1fl/fl mice developed chronic hyperinsulinemia with proatherogenic hypercholesterolemia, a robust proinflammatory state associated with visceral obesity, elevated oxidative stress (reduced NO production), and an increase in plasma and tissue endothelin-1 levels. In parallel, they developed NASH (steatohepatitis, apoptosis, and fibrosis) and atherosclerotic plaque lesions. Mechanistically, hyperinsulinemia caused down-regulation of the insulin receptor followed by inactivation of the insulin receptor substrate 1-protein kinase B-endothelial NO synthase pathway in aortae, lowering the NO level. This also limited CEACAM1 phosphorylation and its sequestration of Shc-transforming protein (Shc), activating the Shc-mitogen-activated protein kinase-nuclear factor kappa B pathway and stimulating endothelin-1 production. Thus, in the presence of proatherogenic dyslipidemia, hyperinsulinemia and hepatic insulin resistance driven by liver-specific deletion of Ceacam1 caused metabolic and vascular alterations reminiscent of NASH and atherosclerosis. Conclusion: Altered CEACAM1-dependent hepatic insulin clearance pathways constitute a molecular link between NASH and atherosclerosis.

2.
J Food Sci ; 84(1): 138-146, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30569590

RESUMO

Many novel bacterial targets and natural inhibitors of enzymes are currently being considered to overcome antibiotic resistance of Escherichia coli. Hence, in this study, 20 essential oil constituents were screened for their potential inhibitory effect on E. coli ATP synthase. This enzyme is involved in the hydrolysis of ATP into ADP and inorganic phosphate (Pi). First, E. coli membrane ATP synthase was isolated via cell lysis. A spectrophotometric method was optimized to quantify the released phosphate from ATP hydrolysis in order to follow the enzymatic activity. The method was validated by determining the kinetic parameters of this reaction (Km = 144.66 µM and Vmax = 270.27 µM/min), and through the inhibition assays of ATP synthase using three reference inhibitors, thymoquinone (half maximal inhibitory concentration [IC50 ] = 50.93 µM), resveratrol (maximum inhibition of 40%), and quercetin (IC50 = 29.01 µM). Among the studied essential oil components, α-terpinene was the most potent inhibitor (IC50 = 19.74 µM) followed by ß-pinene, isoeugenol, eugenol, and estragole.


Assuntos
ATPases Bacterianas Próton-Translocadoras/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Óleos Voláteis/análise , Trifosfato de Adenosina/metabolismo , ATPases Bacterianas Próton-Translocadoras/metabolismo , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Hidrólise , Concentração Inibidora 50 , Fosfatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...