Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 88(7): 753-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20651823

RESUMO

The aim of this study was to determine whether the jejunal oligopeptide transporter PepT1 is regulated by insulin and whether this regulation is sex-dependent in type 1 diabetic rats. PepT1 expression, real-time polymerase chain reaction, and Western blots were performed using jejunal segments from 4 groups of male and female rats: normal (nondiabetic), insulin-treated nondiabetic, streptozotocin (STZ)-induced diabetic (type 1 diabetes), and insulin-treated diabetic models. Furthermore, the same segments from all groups underwent perfusion to assess uptake of the dipeptide glycylsarcosine through PepT1. Our results showed that insulin treatment of nondiabetic female rats decreased blood glucose level but did not affect nondiabetic male rats. In both male and female diabetic rats, insulin did not completely decrease blood glucose level. Insulin treatment decreased PepT1 mRNA level in nondiabetic male rats and increased mRNA level in nondiabetic female rats without affecting the PepT1 protein level in either sex. Inducing diabetes with STZ increased PepT1 mRNA and protein levels in female rats; however, in diabetic male rats, the increase in mRNA level was accompanied by a decrease in PepT1 protein level. Treatment of diabetic male rats with insulin partially reversed the effect of diabetes on PepT1 mRNA and protein levels, whereas the same treatment completely restored both PepT1 mRNA and protein to control levels in insulin-treated diabetic female rats. In both nondiabetic male and female rats, insulin treatment had no effect on PepT1 influx rate, and STZ treatment decreased the transporter influx rate. Treatment of diabetic male and female rats with insulin significantly increased PepT1 influx rate; however, complete recovery was found only in diabetic female rats. These results clearly show that insulin and diabetes affected blood glucose level as well as PepT1 activity, expression, and protein levels in a sex-dependent manner. These results suggest that a factor, probably estrogen, could be responsible for the sex-dependent effects of diabetes and insulin in PepT1 level and activity.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Insulina/farmacologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Simportadores/genética , Simportadores/metabolismo , Animais , Sequência de Bases , Glicemia/metabolismo , Primers do DNA/genética , Diabetes Mellitus Experimental/genética , Dipeptídeos/metabolismo , Estrogênios/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Transportador 1 de Peptídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
2.
Artigo em Inglês | MEDLINE | ID: mdl-17703431

RESUMO

This study focused on the regulation and affinity modulation of angiotensin II (Ang II) binding to its receptor subtypes (AT(1)- and AT(2)-receptor) in the coronary endothelium (CE) and cardiomyocytes (CM) of Sprague-Dawley male rats in normal (N), normal treated with losartan (NL), streptozotocin-induced diabetic (D), insulin-treated diabetic (DI), losartan-treated diabetic (DL), and diabetic co-treated with insulin and losartan (DIL). Heart perfusion was used to estimate Ang II binding affinity (tau=1/k-(n)) to its receptor subtypes on CE and CM. Diabetes decreased tau value on CE and increased it on CM as compared to normal. In DL group, the tau value decreased on CE but was normalised on CM. Insulin treatment alone (DI) or with losartan (DIL) restored t to normal on both CE and CM. Western blot results for AT(1)-receptor density showed an increase in diabetics compared to normal with no normalising effect with insulin treatment. The AT(1)-receptor density was normalised in the diabetic groups treated with losartan +/- insulin. Results for AT(2)-receptor regulation revealed a significant difference between untreated (D) and losartan-treated (DL, DIL) diabetic groups. All of these data show the interrelated pathway and cross-talk between insulin and Ang II system indicating potentially negative effects on the diabetic heart.


Assuntos
Angiotensina II/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Coração/fisiopatologia , Insulina/metabolismo , Losartan/uso terapêutico , Infarto do Miocárdio/prevenção & controle , Receptor Cross-Talk/fisiologia , Animais , Antiarrítmicos/uso terapêutico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Coração/anatomia & histologia , Insulina/uso terapêutico , Tamanho do Órgão/efeitos dos fármacos , Ratos , Receptor de Insulina/fisiologia , Receptores de Angiotensina/fisiologia , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...