Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 105, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483627

RESUMO

Coconut (Cocos nucifera) is the emblematic palm of tropical coastal areas all around the globe. It provides vital resources to millions of farmers. In an effort to better understand its evolutionary history and to develop genomic tools for its improvement, a sequence draft was recently released. Here, we present a dense linkage map (8402 SNPs) aiming to assemble the large genome of coconut (2.42 Gbp, 2n = 32) into 16 pseudomolecules. As a result, 47% of the sequences (representing 77% of the genes) were assigned to 16 linkage groups and ordered. We observed segregation distortion in chromosome Cn15, which is a signature of strong selection among pollen grains, favouring the maternal allele. Comparing our results with the genome of the oil palm Elaeis guineensis allowed us to identify major events in the evolutionary history of palms. We find that coconut underwent a massive transposable element invasion in the last million years, which could be related to the fluctuations of sea level during the glaciations at Pleistocene that would have triggered a population bottleneck. Finally, to better understand the facultative halophyte trait of coconut, we conducted an RNA-seq experiment on leaves to identify key players of signaling pathways involved in salt stress response. Altogether, our findings represent a valuable resource for the coconut breeding community.


Assuntos
Evolução Biológica , Cocos/genética , Genoma de Planta , Tolerância ao Sal/genética , Transdução de Sinais/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Elementos de DNA Transponíveis , Técnicas de Genotipagem , Padrões de Referência
2.
Heliyon ; 6(9): e05005, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005805

RESUMO

The current research was directed to explore hybrid vigour for hybrids resulting from crosses among six genotypes of the genus Citrullus, including C. mucosospermus. For such purpose, the mid parent heterosis and the best parent heterosis were assessed. Non parametric method related to homogeneity Chi-square at 5 % likelihood was applied to compare the regeneration potential of progenies. Student's parametric test at 5% was used to separe two means. Six parental genotypes and 16 hybrid families were evaluated for heterosis. The results showed a heterosis effect for all the characters studied nevertheless, this one varies according to the crossing. The observed hybrid vigour would be due to a superdominance or partial dominance effect. In addition, progeny from crosses have the same regenerative potential on both study sites.

3.
Gigascience ; 6(11): 1-11, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048487

RESUMO

Coconut palm (Cocos nucifera,2n = 32), a member of genus Cocos and family Arecaceae (Palmaceae), is an important tropical fruit and oil crop. Currently, coconut palm is cultivated in 93 countries, including Central and South America, East and West Africa, Southeast Asia and the Pacific Islands, with a total growth area of more than 12 million hectares [1]. Coconut palm is generally classified into 2 main categories: "Tall" (flowering 8-10 years after planting) and "Dwarf" (flowering 4-6 years after planting), based on morphological characteristics and breeding habits. This Palmae species has a long growth period before reproductive years, which hinders conventional breeding progress. In spite of initial successes, improvements made by conventional breeding have been very slow. In the present study, we obtained de novo sequences of the Cocos nucifera genome: a major genomic resource that could be used to facilitate molecular breeding in Cocos nucifera and accelerate the breeding process in this important crop. A total of 419.67 gigabases (Gb) of raw reads were generated by the Illumina HiSeq 2000 platform using a series of paired-end and mate-pair libraries, covering the predicted Cocos nucifera genome length (2.42 Gb, variety "Hainan Tall") to an estimated ×173.32 read depth. A total scaffold length of 2.20 Gb was generated (N50 = 418 Kb), representing 90.91% of the genome. The coconut genome was predicted to harbor 28 039 protein-coding genes, which is less than in Phoenix dactylifera (PDK30: 28 889), Phoenix dactylifera (DPV01: 41 660), and Elaeis guineensis (EG5: 34 802). BUSCO evaluation demonstrated that the obtained scaffold sequences covered 90.8% of the coconut genome and that the genome annotation was 74.1% complete. Genome annotation results revealed that 72.75% of the coconut genome consisted of transposable elements, of which long-terminal repeat retrotransposons elements (LTRs) accounted for the largest proportion (92.23%). Comparative analysis of the antiporter gene family and ion channel gene families between C. nucifera and Arabidopsis thaliana indicated that significant gene expansion may have occurred in the coconut involving Na+/H+ antiporter, carnitine/acylcarnitine translocase, potassium-dependent sodium-calcium exchanger, and potassium channel genes. Despite its agronomic importance, C. nucifera is still under-studied. In this report, we present a draft genome of C. nucifera and provide genomic information that will facilitate future functional genomics and molecular-assisted breeding in this crop species.


Assuntos
Cocos/genética , Genoma de Planta , Anotação de Sequência Molecular
4.
Am J Bot ; 102(10): 1625-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26437888

RESUMO

PREMISE OF THE STUDY: The genome size of a species (C-value) is associated with growth, development and adaptation to environmental changes. Angiosperm C-values range 1200-fold and frequently vary within species, although little is known about the impacts of domestication on genome size. Genome size variation among related species of palms is of evolutionary significance because changes characterize clades and may be associated with polyploidy, transposon amplifications, deletions, or rearrangements. Further knowledge of genome size will provide crucial information needed for planning of whole genome sequencing and accurate annotations. We studied the genome size of Cocos nucifera and its variation among cultivars, and compared it to values for related palms from the Attaleinae subtribe. METHODS: Flow cytometric analysis of isolated nuclei from young palm leaves was used to estimate genome sizes of 23 coconut cultivars (Talls, Dwarfs, and hybrids) worldwide and 17 Cocoseae species. Ancestral genome size was reconstructed on a maximum likelihood phylogeny of Attaleinae from seven WRKY loci. KEY RESULTS: The coconut genome is large-averaging 5.966 pg-and shows intraspecific variation associated with domestication. Variation among Tall coconuts was significantly greater than among Dwarfs. Attaleinae genomes showed moderate size variation across genera, except polyploids Jubaeopsis caffra, Voanioala gerardii, Beccariophoenix alfredii, and Allagoptera caudescens, which had larger genomes. CONCLUSIONS: Our results contribute to the understanding of the relationship between domestication and genome size in long-lived tree crops and provide a basis for whole-genome sequencing of the coconut and other domesticated plants. Polyploidy evolved independently in two clades within Attaleinae.


Assuntos
Arecaceae/genética , Tamanho do Genoma , Genoma de Planta , Melhoramento Vegetal , Ploidias , Evolução Biológica , Cocos/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...