Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904556

RESUMO

The combination of biocompatibility, biodegradability, and high mechanical strength has provided a steady growth in interest in the synthesis and application of lactic acid-based polyesters for the creation of implants. On the other hand, the hydrophobicity of polylactide limits the possibilities of its use in biomedical fields. The ring-opening polymerization of L-lactide, catalyzed by tin (II) 2-ethylhexanoate in the presence of 2,2-bis(hydroxymethyl)propionic acid, and an ester of polyethylene glycol monomethyl ester and 2,2-bis(hydroxymethyl)propionic acid accompanied by the introduction of a pool of hydrophilic groups, that reduce the contact angle, were considered. The structures of the synthesized amphiphilic branched pegylated copolylactides were characterized by 1H NMR spectroscopy and gel permeation chromatography. The resulting amphiphilic copolylactides, with a narrow MWD (1.14-1.22) and molecular weight of 5000-13,000, were used to prepare interpolymer mixtures with PLLA. Already, with the introduction of 10 wt% branched pegylated copolylactides, PLLA-based films had reduced brittleness, hydrophilicity, with a water contact angle of 71.9-88.5°, and increased water absorption. An additional decrease in the water contact angle, of 66.1°, was achieved by filling the mixed polylactide films with 20 wt% hydroxyapatite, which also led to a moderate decrease in strength and ultimate tensile elongation. At the same time, the PLLA modification did not have a significant effect on the melting point and the glass transition temperature; however, the filling with hydroxyapatite increased the thermal stability.

2.
Molecules ; 26(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810558

RESUMO

In this study, new biodegradable and biocompatible amphiphilic polymers were obtained by modifying the peripheral hydroxyl groups of branched polyethers and polyesters with organosilicon substituents. The structures of the synthesized polymers were confirmed by NMR and GPC. Organosilicon moieties of the polymers were formed by silatranes and trimethylsilyl blocks and displayed hydrophilic and hydrophobic properties, respectively. The effect of the ratio of hydrophilic to hydrophobic organosilicon structures on the surface activity and biological activity of macromolecules was studied, together with the effect on these activities of the macromolecules' molecular weight and chemical structure. In particular, the critical micelle concentrations were determined, the effect of the structure of the polymers on their wetting with aqueous solutions on glass and parafilm was described, and the aggregation stability of emulsions was studied. Finally, the effect of the polymer structures on their antifungal activity and seed germination stimulation was examined.


Assuntos
Antifúngicos , Ascomicetos/efeitos dos fármacos , Materiais Biocompatíveis , Compostos Bicíclicos Heterocíclicos com Pontes , Compostos de Organossilício , Poliésteres , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Micelas , Estrutura Molecular , Compostos de Organossilício/síntese química , Compostos de Organossilício/química , Poliésteres/síntese química , Poliésteres/química
3.
Langmuir ; 21(9): 3987-91, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15835965

RESUMO

The formation of biominerals by living organisms is governed by the cooperation of soluble and insoluble macromolecules with peculiar interfacial properties. To date, most of the studies on mineralization processes involve model systems that only account for the existence of one organic matrix and thus disregard the interaction between the soluble and insoluble organic components that is crucial for a better understanding of the processes taking place at the inorganic-organic interface. We have set up a model system composed of a matrix surface, namely, a self-assembled monolayer (SAM), and a soluble component, hyperbranched polyglycerol. The model mineral calcium carbonate displays diverse polymorphism. It could be demonstrated that the phase selection of calcium carbonate is controlled by the cooperative interaction of the SAM and hyperbranched polyglycerol of different molecular weights (M(n) = 500-6000 g/mol) adsorbed to the SAM. Our studies showed that hyperbranched polyglycerol is adsorbed to polar as well as to nonpolar SAMs. This effect can be related to its highly flexible structure and its amphiphilic character. The adsorption of hyperbranched polyglycerol to the SAMs with different surface polarities resulted in the formation of aragonite for alkyl-terminated SAMs and no phase selection for carboxylate-terminated SAMs.


Assuntos
Materiais Biocompatíveis/química , Carbonato de Cálcio/química , Cristalização/métodos , Glicerol/química , Polímeros/química , Adsorção , Biomimética , Micelas , Minerais/química
4.
Biochemistry ; 44(10): 4042-54, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15751981

RESUMO

Nonionic amphiphiles and particularly block copolymers of ethylene oxide and propylene oxide (Pluronics) cause pronounced chemosensitization of tumor cells that exhibit multiple resistance to antineoplastic drugs. This effect is due to inhibition of P-glycoprotein (P-gp) responsible for drug efflux. It was suggested that the inhibition of P-gp might be due to changes in its lipid surrounding. Indeed, high dependence of P-gp activity on the membrane microviscosity was demonstrated [Regev et al. (1999) Eur. J. Biochem. 259, 18-24], suggesting that the ability of Pluronics to affect the P-gp activity is mediated by their effect on the membrane structure. We have found recently that adsorption of Pluronics on lipid bilayers induced considerable disturbance of the lipid packing [Krylova et al. (2003) Chemistry 9, 3930-3936]. In the present paper, we studied 19 amphiphilic copolymers, including newly synthesized hyperbranched polyglycerols, Pluronic and Brij surfactants, for their ability to accelerate flip-flop and permeation of antitumor drug doxorubicin (DOX) in liposomes. It was found that not only bulk hydrophobicity but also the chemical microstructure of the copolymer determines its membrane disturbing ability. Copolymers containing polypropylene oxide caused higher acceleration of flip-flop and DOX permeation than polysurfactants containing aliphatic chains. The effects of copolymers containing hyperbranched polyglycerol "corona" were more pronounced, as compared to the copolymers with linear poly(ethylene oxide) chains, indicating that a bulky hydrophilic block induces additional disturbances in the lipid bilayer. A good correlation between the copolymer flippase activity and a linear combination of copolymer bulk hydrophobicity and the van der Waals volume of its hydrophobic block was found. The relationship between the structure of a copolymer and its ability to disturb lipid membranes presented in this paper may be useful for the design of novel amphiphilic copolymers capable of affecting the activity of membrane transporters in living cells.


Assuntos
Compostos de Epóxi/química , Óxido de Etileno/química , Bicamadas Lipídicas/química , Membranas Artificiais , Poloxâmero/química , Adsorção , Animais , Bovinos , Doxorrubicina/química , Radicais Livres/química , Glicerol/síntese química , Glicerol/química , Hexanos/química , Lipossomos , Permeabilidade , Fosfatidilcolinas/química , Polietilenoglicóis/química , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...