Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 38(4): 687-96, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089735

RESUMO

The amino acid sequences of the human UDP-glucuronosyltransferases (UGTs) 1A9 and 1A10 are 93% identical, yet there are large differences in their activity and substrate selectivity. For example, the regioselectivity in propranolol glucuronidation, the regioselectivity in dobutamine glucuronidation, and the glucuronidation rate of alpha- and beta-estradiol differ greatly between UGT1A9 and UGT1A10. To identify the residue responsible for the activity differences, we divided the N-terminal half of the two UGTs into five comparable segments by inserting four unique restriction sites at identical positions in both genes and constructing chimeras in which segments of UGT1A9 were individually replaced by the corresponding segments from UGT1A10. Activity analyses of the resulting mutants, 910A [1A10((1-83))/1A9((84-285))], 910B [1A9((1-83))/1A10((84-147))/1A9((148-285))], 910C [1A9((1-147))/1A10((148-181))/1A9((182-285))], 910D [1A9((1-181))/1A10((182-235))/1A9((236-285))], and 910E [1A9((1-235))/1A10((236-285))] indicated that more than one residue is responsible for the differences between UGT1A9 and UGT1A10. We next prepared four double chimeras, in which two of the above UGT1A9 segments were replaced simultaneously by the corresponding UGT1A10 segments. However, none of the double chimeras glucuronidated either estradiol, propranolol, or dobutamine at rates that resembled those of UGT1A10. On the other hand, studying the kinetics of 1-naphthol glucuronidation yielded more focused results, indicating that residues within segment B (84-147) contribute directly to the K(m) value for this substrate. Further mutagenesis and activity assays suggested that Phe117 of UGT1A9 participates in 1-naphthol binding. In addition, it appears that residues within segment C of the N-terminal domain, mainly at positions 152 and 169, contribute to the higher glucuronidation rates of UGT1A10.


Assuntos
Aminoácidos/química , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Agonistas Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Dobutamina/metabolismo , Estradiol/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Humanos , Indicadores e Reagentes , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Naftóis/metabolismo , Propranolol/metabolismo , Especificidade por Substrato , UDP-Glucuronosiltransferase 1A
2.
Drug Metab Dispos ; 37(4): 768-75, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19116261

RESUMO

The purpose of this work was to identify human UDP-glucuronosyltransferases (UGTs) capable of glucuronidating dopamine. Using a sensitive liquid chromatography-tandem mass spectrometry method, we screened all 19 known human UGTs and found that only one enzyme, UGT1A10, catalyzed dopamine glucuronidation at substantial rates, yielding both dopamine-4-O-glucuronide (37.1 pmol/min/mg) and dopamine-3-O-glucuronide (32.7 pmol/min/mg). Much lower (<2 pmol/min/mg) or no dopamine glucuronidation activity was found for all other UGTs tested at 1 mM dopamine. Evaluation of the UGT1A10 expression pattern in human tissues by quantitative reverse transcription-polymerase chain reaction confirmed that it is mainly expressed in small intestine, colon, and adipose tissue, whereas only low levels were found in trachea, stomach, liver, testis, and prostate but not in brain. Dopamine glucuronidation assays using microsomes from human liver and intestine corroborated these findings because activity in intestinal microsomes was markedly higher than that in liver microsomes. Moreover, the glucuronidation regioselectivity in intestinal microsomes was similar to that of recombinant UGT1A10, and both enzyme sources exhibited sigmoidal kinetics with substrate affinity (K(A)) values in the range of 2 to 3 mM. Examination of four UGT1A10 mutants, F90A, F90L, F93A, and F93L, revealed lower dopamine glucuronidation in all of them, particularly in F90A and F93A. Nonetheless, the substrate affinities of the four mutants were similar to that of UGT1A10. It is interesting to note that mutant F93L exhibited regioselectivity, conjugating dopamine at the 4-hydroxyl (OH) position approximately 3 times more efficiently than at the 3-OH position. These results shed new light on the structure and function of UGT1A10 and indicate that dopamine may be a useful probe substrate for this enzyme.


Assuntos
Dopamina/metabolismo , Glucuronosiltransferase/metabolismo , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Primers do DNA , Humanos , Cinética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato , Espectrometria de Massas em Tandem
3.
Drug Metab Dispos ; 36(11): 2307-15, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18719240

RESUMO

The glucuronidation of 17beta-estradiol (beta-estradiol) and 17alpha-estradiol (epiestradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. Recombinant human UDP-glucuronosyltransferases (UGTs) UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A10 conjugated one or both diastereomers, mainly at the 3-OH. The activity of UGT1A4 was low and unique because it was directed merely toward the 17-OH of both aglycones. UGT1A10 exhibited particularly high estradiol glucuronidation activity, the rate and affinity of which were significantly higher in the case of beta-estradiol than with epiestradiol. UGT1A9 did not catalyze estradiol glucuronidation, but UGT1A9-catalyzed scopoletin glucuronidation was competitively inhibited by beta-estradiol. UGT2B4, UGT2B7, and UGT2B17 exclusively conjugated the estradiols at the 17-OH position in a highly stereoselective fashion. UGT2B4 was specific for epiestradiol; UGT2B7 glucuronidated both diastereomers, with high affinity for epiestradiol, whereas UGT2B17 only glucuronidated beta-estradiol. UGT2B15 glucuronidated both estradiols at the 3-OH, with a strong preference for epiestradiol. Human UGT2A1 and UGT2A2 glucuronidated both diastereoisomers at both hydroxyl groups. Microsomal studies revealed that human liver mainly yielded epiestradiol 17-O-glucuronide, and human intestine primarily yielded beta-estradiol 3-O-glucuronide, whereas rat liver preferentially formed beta-estradiol 17-O-glucuronide. Of the three recombinant rat UGTs that were examined in this study, rUGT2B1 was specific for the 17-OH of beta-estradiol, rUGT2B2 did not catalyze estradiol glucuronidation, whereas rUGT2B3 exhibited high activity toward the 17-OH in both diastereoisomers. The results show that although many UGTs can catalyze estradiol glucuronidation, there are marked differences in their kinetics, regioselectivity, and stereoselectivity.


Assuntos
Estradiol/análogos & derivados , Glucuronídeos/química , Glucuronídeos/metabolismo , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Animais , Catálise , Bovinos , Estradiol/química , Estradiol/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Humanos , Masculino , Conformação Molecular , Coelhos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Estereoisomerismo , Suínos
4.
Biochem Pharmacol ; 74(3): 504-10, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17548063

RESUMO

SULT1A3 is an enzyme that catalyzes the sulfonation of many endogenous and exogenous phenols and catechols. The most important endogenous substrate is dopamine (DA), which is often used as a probe substrate for SULT1A3. We developed a new method for analyzing the SULT1A3 reaction products by high-performance liquid chromatography (HPLC) with electrochemical detection. The sulfonate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), DA and the two dopamine sulfates, DA-3-O-sulfate and DA-4-O-sulfate, can be separated within 3 min. This enables quantitation of the sulfates without radioactive PAPS or the precipitation of unreacted PAPS. Both sulfates were synthesized as reference substances and characterized by (1)H and (13)C nuclear magnetic resonance (NMR), mass spectrometry (MS) and tandem mass spectrometry (MS/MS). The purity of the dopamine sulfates was estimated by HPLC using a diode array detector. We determined the enzyme kinetic parameters for formation of DA-3-O-sulfate and DA-4-O-sulfate using purified recombinant human SULT1A3. The reactions followed Michaelis-Menten kinetics up to 50 microM DA concentration, and strong substrate inhibition was observed at higher concentrations. The apparent K(m) values for sulfonation at both hydroxy groups were similar (2.21+/-0.764 and 2.59+/-1.06 microM for DA-4-O-sulfate and DA-3-O-sulfate, respectively), but the V(max) was approximately six times higher for the formation of the 3-O-sulfate (344+/-139 nmol/min/mg protein) than the 4-O-sulfate (45.4+/-16.5 nmol/min/mg protein). These results are in accordance with the observation that DA-3-O-sulfate is more abundant in human blood than DA-4-O-sulfate and that in the crystal structure of SULT1A3 with dopamine bound to the active site, the 3-hydroxy group is aligned to form hydrogen bonds with catalytic residues of the enzyme.


Assuntos
Dopamina/análogos & derivados , Dopamina/metabolismo , Sulfonas/metabolismo , Sulfotransferases/metabolismo , Arilsulfotransferase , Cromatografia Líquida de Alta Pressão , Dopamina/sangue , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...