Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(32): 28378-28387, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990454

RESUMO

Peptidylarginine deiminases (PADs) are enzymes that catalyze the Ca2+-dependent conversion of arginine residues into proteins to citrulline residues. Five PAD isozymes have been identified in mammals. Several studies have shown that the active-site pockets of these isozymes are formed when Ca2+ ions are properly bound. We previously characterized the structures of PAD3 in six states. Among these, we identified a "nonproductive" form of PAD3 in which the active site was disordered even though five Ca2+ ions were bound. This strange structure was probably obtained as a result of either high Ca2+ concentration (∼260 mM)-induced denaturation during the crystallization process or high Ca2+-concentration-induced autocitrullination. While autocitrullination has been reported in PAD2 and PAD4 for some time, only a single report on PAD3 has been published recently. In this study, we investigated whether PAD3 catalyzes the autocitrullination reaction and identified autocitrullination sites. In addition to the capacity of PAD3 for autocitrullination, the autocitrullination sites increased depending on the Ca2+ concentration and reaction time. These findings suggest that some of the arginine residues in the "nonproductive" form of PAD3 would be autocitrullinated. Furthermore, most of the autocitrullinated sites in PAD3 were located near the substrate-binding site. Given the high Ca2+ concentration in the crystallization condition, it is likely that Arg372 was citrullinated in the "nonproductive" PAD3 structure, the structure was slightly altered from the active form by citrulline residues, and probably inhibited Ca2+-ion binding at the proper position. Following Arg372 citrullination, PAD3 enters an inactive form; however, the Arg372-citrullinated PAD3 are considered minor components in autocitrullinated PAD3 (CitPAD3), and CitPAD3 does not significantly decrease the enzyme activity. Autocitrullination of PAD3 could not be confirmed at the low Ca2+ concentrations seen in vivo. Future experiments using cells and animals are needed to verify the effect of Ca2+ on the PAD3 structure and functions in vivo.

2.
Arch Biochem Biophys ; 708: 108911, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971157

RESUMO

Peptidylarginine deiminase type III (PAD3) is an isozyme belonging to the PAD enzyme family that converts arginine to citrulline residue(s) within proteins. PAD3 is expressed in most differentiated keratinocytes of the epidermis and hair follicles, while S100A3, trichohyalin, and filaggrin are its principal substrates. In this study, the X-ray crystal structures of PAD3 in six states, including its complex with the PAD inhibitor Cl-amidine, were determined. This structural analysis identified a large space around Gly374 in the PAD3-Ca2+-Cl-amidine complex, which may be used to develop novel PAD3-selective inhibitors. In addition, similarities between PAD3 and PAD4 were found based on the investigation of PAD4 reactivity with S100A3 in vitro. A comparison of the structures of PAD1, PAD2, PAD3, and PAD4 implied that the flexibility of the structures around the active site may lead to different substrate selectivity among these PAD isozymes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteína-Arginina Desiminase do Tipo 3/química , Proteína-Arginina Desiminase do Tipo 3/metabolismo , Cristalografia por Raios X , Proteínas Filagrinas , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteína-Arginina Desiminase do Tipo 3/antagonistas & inibidores
3.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 3): 130-137, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133998

RESUMO

TRPV1, a member of the transient receptor potential (TRP) channels family, has been found to be involved in redox sensing. The crystal structure of the human TRPV1 ankyrin-repeat domain (TRPV1-ARD) was determined at 4.5 Šresolution under nonreducing conditions. This is the first report of the crystal structure of a ligand-free form of TRPV1-ARD and in particular of the human homologue. The structure showed a unique conformation in finger loop 3 near Cys258, which is most likely to be involved in inter-subunit disulfide-bond formation. Also, in human TRPV1-ARD it was possible for solvent to access Cys258. This structural feature might be related to the high sensitivity of human TRPV1 to oxidants. ESI-MS revealed that Cys258 did not form an S-OH functionality even under nonreducing conditions.


Assuntos
Repetição de Anquirina/fisiologia , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética , Anquirinas/química , Anquirinas/genética , Anquirinas/metabolismo , Cristalização/métodos , Humanos , Estrutura Secundária de Proteína , Canais de Cátion TRPV/metabolismo
4.
ACS Omega ; 5(8): 4032-4042, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149230

RESUMO

S100A3 protein, a member of the EF-hand-type Ca2+-binding S100 protein family, undergoes a Ca2+-/Zn2+-induced structural change to a tetrameric state upon specific citrullination of R51 in human hair cuticular cells. To elucidate the underlying mechanism, we prepared recombinant mutant S100A3 proteins, including R51A, R51C, R51E, R51K, and R51Q, as potential models of post-translationally modified S100A3 and evaluated their biophysical and biochemical properties relative to wild-type (WT) S100A3 and WT citrullinated in vitro. Size exclusion chromatography (SEC) showed that R51Q formed a tetramer in the presence of Ca2+, while Ca2+ titration monitored by Trp fluorescence indicated that R51Q had Ca2+-binding properties similar to those of citrullinated S1003A. We therefore concluded that R51Q is the optimal mutant model of post-translationally modified S100A3. We compared the solution structure of WT S100A3 and the R51Q mutant in the absence and presence of Ca2+ and Zn2+ by SEC-small-angle X-ray scattering. The radius of gyration of R51Q in the metal-free state was almost the same as that of WT; however, it increased by ∼1.5-fold in the presence of Ca2+/Zn2+, indicating a large expansion in molecular size. By contrast, addition of Ca2+/Zn2+ to WT led to nonspecific aggregation in SEC analysis and dynamic light scattering, suggesting that citrullination of S100A3 is essential for stabilization of the Ca2+-/Zn2+-bound state. These findings will lead to the further development of structural analyses for the Ca2+-/Zn2+-bound S100A3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...