Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Life (Basel) ; 11(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34685477

RESUMO

The stemness-associated markers OCT4, NANOG, SOX2, KLF4 and c-MYC are expressed in numerous cancer types suggesting the presence of cancer stem cells (CSCs). Immunohistochemical (IHC) staining performed on 12 lung adenocarcinoma (LA) tissue samples showed protein expression of OCT4, NANOG, SOX2, KLF4 and c-MYC, and the CSC marker CD44. In situ hybridization (ISH) performed on six of the LA tissue samples showed mRNA expression of OCT4, NANOG, SOX2, KLF4 and c-MYC. Immunofluorescence staining performed on three of the tissue samples showed co-expression of OCT4 and c-MYC with NANOG, SOX2 and KLF4 by tumor gland cells, and expression of OCT4 and c-MYC exclusively by cells within the stroma. RT-qPCR performed on five LA-derived primary cell lines showed mRNA expression of all the markers except SOX2. Western blotting performed on four LA-derived primary cell lines demonstrated protein expression of all the markers except SOX2 and NANOG. Initial tumorsphere assays performed on four LA-derived primary cell lines demonstrated 0-80% of tumorspheres surpassing the 50 µm threshold. The expression of the stemness-associated markers OCT4, SOX2, NANOG, KFL4 and c-MYC by LA at the mRNA and protein level, and the unique expression patterns suggest a putative presence of CSC subpopulations within LA, which may be a novel therapeutic target for this cancer. Further functional studies are required to investigate the possession of stemness traits.

2.
Biomolecules ; 11(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916968

RESUMO

This study investigated the expression of components of the renin-angiotensin system (RAS) by cancer stem cells (CSCs) we have recently demonstrated in renal clear cell carcinoma (RCCC). Fifteen RCCC tissue samples underwent immunohistochemical staining for components of the RAS: renin, pro-renin receptor (PRR), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), and angiotensin II receptor 2 (AT2R). Immunofluorescence co-staining or double immunohistochemical staining of these components of the RAS with stemness-associated markers OCT4 or KLF4 was performed on two of the samples. Protein and transcript expression of these components of the RAS in six RCCC tissue samples was investigated using western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, angiotensin II receptor 1 (AT1R) was investigated using RT-qPCR only. Immunohistochemical staining demonstrated expression of renin, PRR, and ACE2 in 11, 13, and 13 out of 15 RCCC samples, respectively, while AT2R was expressed in all 15 samples. ACE was detected in the endothelium of normal vasculature only. Double immunohistochemical staining demonstrated localization of ACE2, but not renin, to the KLF4+ CSCs. Immunofluorescence staining showed localization of PRR and AT2R to the OCT4+ CSCs. Western blotting confirmed protein expression of all components of the RAS except renin. RT-qPCR demonstrated transcript expression of all components of the RAS including AT1R, but not AT2R, in all six RCCC tissue samples. This study demonstrated expression of PRR, ACE2, and AT2R by the CSCs within RCCC. Further studies may lead to novel therapeutic targeting of CSCs by manipulation of the RAS in the treatment of this aggressive cancer.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Células-Tronco Neoplásicas/metabolismo , Sistema Renina-Angiotensina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/metabolismo , Feminino , Humanos , Neoplasias Renais/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Renina/genética , Renina/metabolismo
3.
Cells ; 10(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513805

RESUMO

We investigated the expression of components of the renin-angiotensin system (RAS) by cancer stem cell (CSC) subpopulations in metastatic head and neck cutaneous squamous cell carcinoma (mHNcSCC). Immunohistochemical staining demonstrated expression of prorenin receptor (PRR), angiotensin-converting enzyme (ACE), and angiotensin II receptor 2 (AT2R) in all cases and angiotensinogen in 14 cases; however, renin and ACE2 were not detected in any of the 20 mHNcSCC tissue samples. Western blotting showed protein expression of angiotensinogen in all six mHNcSCC tissue samples, but in none of the four mHNcSCC-derived primary cell lines, while PRR was detected in the four cell lines only. RT-qPCR confirmed transcripts of angiotensinogen, PRR, ACE, and angiotensin II receptor 1 (AT1R), but not renin or AT2R in all four mHNcSCC tissue samples and all four mHNcSCC-derived primary cell lines, while ACE2 was expressed in the tissue samples only. Double immunohistochemical staining on two of the mHNcSCC tissue samples showed expression of angiotensinogen by the SOX2+ CSCs within the tumor nests (TNs), and immunofluorescence showed expression of PRR and AT2R by the SOX2+ CSCs within the TNs and the peritumoral stroma (PTS). ACE was expressed on the endothelium of the tumor microvessels within the PTS. We demonstrated expression of angiotensinogen by CSCs within the TNs, PRR, and AT2R by the CSCs within the TNs and the PTS, in addition to ACE on the endothelium of tumor microvessels in mHNcSCC.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Sistema Renina-Angiotensina , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Neoplasias de Cabeça e Pescoço/genética , Humanos , Microvasos/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Renina/genética , Renina/metabolismo , Sistema Renina-Angiotensina/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/irrigação sanguínea , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Células Estromais/metabolismo , Células Estromais/patologia , Receptor de Pró-Renina
4.
Lymphat Res Biol ; 19(4): 347-354, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33337924

RESUMO

Background: This study investigated the expression and localization of cathepsins B, D, and G in relationship to the embryonic stem cell (ESC)-like population we have previously identified in microcystic lymphatic malformation (mLM). Methods and Results: Immunohistochemical staining demonstrated expression of cathepsins B, D, and G in cervicofacial mLM tissue samples from 11 patients. Immunofluorescence staining of two representative mLM samples showed localization of cathepsins B and D to the OCT4+ and the c-MYC+ cells on the endothelium of lesional vessels and the stroma, while cathepsin G was localized to the OCT4+/tryptase+ cells within the stroma. Transcript expression of cathepsins B, D, and G was confirmed using reverse transcription quantitative polymerase chain reaction (RT-qPCR; n = 5). Western blotting (n = 3) performed on the mLM tissue samples revealed protein expression of cathepsins B and D, which were demonstrated to be enzymatically active using enzymatic activity assays. Conclusion: This study demonstrated expression of cathepsins B and D by the ESC-like cells on the endothelium of lesional vessels and the stroma, while cathepsin G was localized to the OCT4+ phenotypic mast cells within the stroma of mLM.


Assuntos
Catepsina B , Catepsina D/genética , Catepsina G/genética , Anormalidades Linfáticas , Western Blotting , Catepsina B/genética , Células-Tronco Embrionárias , Humanos , Reação em Cadeia da Polimerase em Tempo Real
5.
Plast Reconstr Surg Glob Open ; 8(8): e3042, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32983794

RESUMO

Cancer stem cell (CSC) subpopulations within moderately differentiated head and neck cutaneous squamous cell carcinoma (MDHNcSCC) express the components of the renin-angiotensin system (RAS). This study investigated the expression of cathepsins B, D, and G, which constitute bypass loops of the RAS, by CSCs in MDHNcSCC. METHODS: Immunohistochemical staining was performed on MDHNcSCC tissue samples from 15 patients to determine the expression of cathepsins B, D, and G. Co-localization of these cathepsins with the embryonic stem cell markers Octamer-binding transcription factor 4 (OCT4) and c-MYC was investigated with immunofluorescence staining. Reverse transcription quantitative polymerase chain reaction was performed on 5 MDHNcSCC tissue samples to investigate transcript expression of cathepsins B, D and G. Western blotting and enzymatic activity assays were performed on 5 MDHNcSCC tissue samples and 6 MDHNcSCC-derived primary cell lines to confirm protein expression, transcript expression, and functional activity of these cathepsins, respectively. RESULTS: Immunohistochemical staining demonstrated the expression of cathepsins B, D, and G in all MDHNcSCC tissue samples. Immunofluorescence staining showed localization of cathepsins B and D to the c-MYC+ CSC subpopulations and the OCT4+ CSC subpopulations within the tumor nests and the peritumoral stroma. Cathepsin G was expressed on the tryptase+/c-MYC+ cells within the peritumoral stroma. Reverse transcription quantitative polymerase chain reaction demonstrated transcript expression of cathepsins B, D and G in the MDHNcSCC tissue samples. Western blotting and enzymatic activity assays confirmed protein expression and functional activity of cathepsins B and D in the MDHNcSCC tissue samples and MDHNcSCC-derived primary cell lines, respectively. CONCLUSIONS: Cathepsins B, D, and G are expressed in MDHNcSCC with functionally active cathepsins B and D localizing to the CSC subpopulations, and cathepsin G is expressed by mast cells, suggesting the potential use of cathepsin inhibitors in addition to RAS blockade to target CSCs in MDHNcSCC.

6.
Front Oncol ; 10: 1091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850316

RESUMO

Cancer stem cells (CSCs) have been identified in many cancer types including primary head and neck cutaneous squamous cell carcinoma (HNcSCC). This study aimed to identify and characterize CSCs in metastatic HNcSCC (mHNcSCC). Immunohistochemical staining performed on mHNcSCC samples from 15 patients demonstrated expression of the induced pluripotent stem cell (iPSC) markers OCT4, SOX2, NANOG, KLF4, and c-MYC in all 15 samples. In situ hybridization and RT-qPCR performed on four of these mHNcSCC tissue samples confirmed transcript expression of all five iPSC markers. Immunofluorescence staining performed on three of these mHNcSCC samples demonstrated expression of c-MYC on cells within the tumor nests (TNs) and the peri-tumoral stroma (PTS) that also expressed KLF4. OCT4 was expressed on the SOX2+/NANOG+/KLF4+ cells within the TNs, and the SOX2+/NANOG+/KLF4+ cells within the PTS. RT-qPCR demonstrated transcript expression of all five iPSC markers in all three mHNcSCC-derived primary cell lines, except for SOX2 in one cell line. Western blotting showed the presence of SOX2, KLF4, and c-MYC but not OCT4 and NANOG in the three mHNcSCC-derived primary cell lines. All three cell lines formed tumorspheres, at the first passage. We demonstrated an OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ CSC subpopulation and an OCT4+/NANOG-/SOX2+/KLF4+/c-MYC+ subpopulation within the TNs, and an OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ subpopulation within the PTS of mHNcSCC.

7.
Plast Reconstr Surg Glob Open ; 8(2): e2598, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32309069

RESUMO

BACKGROUND: We have previously shown that the endothelium of the microvessels of infantile hemangioma (IH) exhibits a hemogenic endothelium phenotype and proposed its potential to give rise to mesenchymal stem cells, similar to the development of hematopoietic cells. This endothelial-to-mesenchymal transition (Endo-MT) process involves the acquisition of a migratory phenotype by the endothelial cells, similar to epithelial-to-mesenchymal transition that occurs during neural crest development. We hypothesized that proliferating IH expresses Endo-MT-associated proteins and investigated their expression at the mRNA, protein, and functional levels. METHODS: Immunohistochemical staining of paraffin-embedded sections of proliferating IH samples from 10 patients was undertaken to investigate the expression of the Endo-MT proteins Twist1, Twist2, Snail1, and Slug. Transcriptional analysis was performed for the same markers on proliferating IH tissues and CD34+ and CD34- cells from proliferating IH-derived primary cell lines. Adipogenic and osteogenic differentiation plasticity was determined on the CD34-sorted fractions. RESULTS: The endothelium of the microvessels and the cells within the interstitium of proliferating IH tissues expressed Twist1, Twist2, and Slug proteins. Twist1 was also expressed on the pericyte layer of the microvessels, whereas Snail1 was not expressed. Both CD34+ and CD34- populations from the IH-derived primary cell lines underwent adipogenic and osteogenic differentiation. CONCLUSIONS: The expression of Endo-MT-associated proteins Twist1, Twist2, and Slug by both the endothelium of the microvessels and cells within the interstitium, and Twist1 on the pericyte layer of the microvessels of proliferating IH, suggest the presence of a process similar to Endo-MT. This may enable a tightly controlled primitive endothelium of proliferating IH to acquire a migratory mesenchymal phenotype with the ability to migrate away, providing a plausible explanation for the development of a fibrofatty residuum observed during involution of IH.

8.
Cells ; 9(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019273

RESUMO

Cancer stem cells (CSCs) have been identified in many cancer types. This study identified and characterized CSCs in head and neck metastatic malignant melanoma (HNmMM) to regional lymph nodes using induced pluripotent stem cell (iPSC) markers. Immunohistochemical (IHC) staining performed on 20 HNmMM tissue samples demonstrated expression of iPSC markers OCT4, SOX2, KLF4, and c-MYC in all samples, while NANOG was expressed at low levels in two samples. Immunofluorescence (IF) staining demonstrated an OCT4+/SOX2+/KLF4+/c-MYC+ CSC subpopulation within the tumor nests (TNs) and another within the peritumoral stroma (PTS) of HNmMM tissues. IF also showed expression of NANOG by some OCT4+/SOX2+/KLF4+/c-MYC+ cells within the TNs in an HNmMM tissue sample that expressed NANOG on IHC staining. In situ hybridization (n = 6) and reverse-transcription quantitative polymerase chain reaction (n = 5) on the HNmMM samples confirmed expression of all five iPSC markers. Western blotting of primary cell lines derived from four of the 20 HNmMM tissue samples showed expression of SOX2, KLF4, and c-MYC but not OCT4 and NANOG, and three of these cell lines formed tumorspheres in vitro. We demonstrate the presence of two putative CSC subpopulations within HNmMM, which may be a novel therapeutic target in the treatment of this aggressive cancer.


Assuntos
Neoplasias de Cabeça e Pescoço/patologia , Melanoma/patologia , Células-Tronco Neoplásicas/patologia , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
J Craniofac Surg ; 31(2): e155-e156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31977706

RESUMO

We report an adult case from Kiribati, with a large dermoid cyst, and resultant underlying plagiocephaly, that was managed well with surgical excision. We also discuss the pathogenesis of this condition and the optimum timing for surgical intervention to avoid the deformity.


Assuntos
Cisto Dermoide/cirurgia , Plagiocefalia/complicações , Cisto Dermoide/diagnóstico por imagem , Feminino , Humanos , Tomografia Computadorizada por Raios X , Adulto Jovem
11.
Plast Reconstr Surg ; 144(6): 1338-1349, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31764649

RESUMO

BACKGROUND: The authors have previously shown that an embryonic stem cell-like population within keloid-associated lymphoid tissues in keloid lesions expresses components of the renin-angiotensin system that may be dysregulated. The authors hypothesized that cathepsins B, D, and G are present within the embryonic stem cell-like population in keloid lesions and contribute to bypass loops of the renin-angiotensin system. METHODS: 3,3'-Diaminobenzidine immunohistochemical staining for cathepsins B, D, and G was performed on formalin-fixed paraffin-embedded sections in keloid tissue samples of 11 patients. Immunofluorescence immunohistochemical staining was performed on three of these keloid tissue samples, by co-staining with CD34, tryptase, and OCT4. Western blotting, reverse transcription quantitative polymerase chain reaction, and enzyme activity assays were performed on five keloid tissue samples and four keloid-derived primary cell lines to investigate protein and mRNA expression, and functional activity, respectively. RESULTS: 3,3'-Diaminobenzidine immunohistochemical staining demonstrated expression of cathepsins B, D, and G in all 15 keloid tissue samples. Immunofluorescence immunohistochemical staining showed localization of cathepsins B and D to the endothelium of microvessels within the keloid-associated lymphoid tissues and localization of cathepsin G to the tryptase-positive perivascular cells. Western blotting confirmed semiquantitative levels of cathepsins B and D in keloid tissue samples and keloid-derived primary cell lines. Reverse transcription quantitative polymerase chain reaction showed quantitative transcriptional activation of cathepsins B and D in keloid tissue samples and keloid-derived primary cell lines and cathepsin G in keloid tissue samples. Enzyme activity assays demonstrated functional activity of cathepsins B and D. CONCLUSION: Cathepsins B, D, and G are expressed by the embryonic stem cell-like population within the keloid-associated lymphoid tissues of keloid lesions and may act to bypass the renin-angiotensin system, suggesting a potential therapeutic target using renin-angiotensin system modulators and cathepsin inhibitors.


Assuntos
Catepsinas/metabolismo , Células-Tronco Embrionárias/química , Queloide/metabolismo , Western Blotting , Catepsina A/metabolismo , Catepsina B/metabolismo , Catepsina G/metabolismo , Linhagem Celular/citologia , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
PLoS One ; 14(9): e0221963, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31491003

RESUMO

AIMS: The cancer stem cell concept proposes that tumor growth and recurrence is driven by a small population of cancer stem cells (CSCs). In this study we investigated the expression of induced-pluripotent stem cell (iPSC) markers and their localization in primary low-grade adenocarcinoma (LGCA) and high-grade adenocarcinoma (HGCA) and their patient-matched normal colon samples. MATERIALS AND METHODS: Transcription and translation of iPSC markers OCT4, SOX2, NANOG, KLF4 and c-MYC were investigated using immunohistochemical (IHC) staining, RT-qPCR and in-situ hybridization (ISH). RESULTS: All five iPSC markers were detected at the transcriptional and translational levels. Protein abundance was found to be correlated with tumor grade. Based on their protein expression within the tumors, two sub-populations of cells were identified: a NANOG+/OCT4- epithelial subpopulation and an OCT4+/NANOG- stromal subpopulation. All cases were accurately graded based on four pieces of iPSC marker-related data. CONCLUSIONS: This study suggests the presence of two putative sub-populations of CSCs: a NANOG+/OCT4- epithelial subpopulation and an OCT4+/NANOG- stromal subpopulation. Normal colon, LGCA and HGCA could be accurately distinguished from one another using iPSC marker expression. Once validated, novel combinations of iPSC markers may provide diagnostic and prognostic value to help guide patient management.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/patologia , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Gradação de Tumores
13.
Heliyon ; 5(8): e02257, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463389

RESUMO

Cancer stem cells (CSC), the putative origin of cancer, account for local recurrence and metastasis. We aimed to identify and characterize CSCs within moderately differentiated head and neck cutaneous squamous cell carcinoma (MDHNCSCC). Formalin-fixed paraffin-embedded MDHNCSCC sections of ten patients underwent 3,3-diaminobenzidine (DAB) immunohistochemical (IHC) staining for induced pluripotent stem cell (iPSC) markers OCT4, NANOG, SOX2, KLF4 and c-MYC. Localization of these markers was investigated using immunofluorescence (IF) IHC staining of three of these MDHNCSCC samples. mRNA expression of these iPSC markers in the MDHNCSCC tissue samples was determined by colorimetric in-situ hybridization (CISH, n = 6), and reverse-transcription quantitative polymerase chain reaction (RT-qPCR, n = 4). RT-qPCR was also performed on four MDHNCSCC-derived primary cell lines. DAB IHC staining demonstrated expression of all five iPSC markers within all ten MDHNCSCC tissues samples. CISH and RT-qPCR confirmed mRNA expression of all five iPSC markers within all MDHNCSCC tissues samples examined. RT-PCR demonstrated mRNA transcripts of all five iPSC markers in all four MDHNCSCC-derived primary cell lines. IF IHC staining showed co-expression of OCT4 with SOX2 and KLF4 throughout the tumor nests (TNs) and peri-tumoral stroma (PTS). There was an OCT4+/NANOG+ subpopulation within the TNs, and an OCT4+/NANOG- subpopulation and an OCT4+/NANOG+ subpopulation within the PTS. All iPSC markers were expressed by the endothelium of microvessels within the PTS. Our findings suggest the presence of an OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ CSC subpopulation within the TNs, PTS and endothelium of microvessels within the PTS; and an OCT4+/NANOG-/SOX2+/KLF4+/c-MYC+ subpopulation exclusively within the PTS in MDHNCSCC. These CSC subpopulations could be a potential novel therapeutic target for treatment of MDHNCSCC.

14.
Plast Reconstr Surg ; 144(2): 372-384, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31348346

RESUMO

BACKGROUND: We investigated expression of prorenin receptor, angiotensin-converting enzyme, angiotensin II receptor 1, and angiotensin II receptor 2 by the embryonic stem cell-like population on the endothelium of the microvessels and perivascular cells within keloid-associated lymphoid tissues. METHODS: Immunohistochemical staining for prorenin receptor, angiotensin-converting enzyme, angiotensin II receptor 1, and angiotensin II receptor 2 was performed on 11 formalin-fixed, paraffin-embedded sections of keloid tissue samples. Immunofluorescence staining was performed on three keloid tissue samples by co-staining with OCT4, CD34, ERG, and tryptase. Real-time quantitative polymerase chain reaction was performed on five keloid tissue samples and four keloid-derived primary cell lines. Western blotting was performed on the four keloid-derived primary cell lines for mRNA and protein expression of these proteins, respectively. RESULTS: Immunohistochemical and immunofluorescence staining showed expression of prorenin receptor, angiotensin-converting enzyme, angiotensin II receptor 1, and angiotensin II receptor 2 in all 11 keloid tissue samples. Prorenin receptor and angiotensin II receptor 1 were expressed on the endothelium and the pericyte layer of the microvessels and perivascular cells, angiotensin II receptor 2 was localized to the endothelium of the microvessels and the tryptase-positive perivascular cells, and angiotensin-converting enzyme was localized to the endothelium of the microvessel, within the keloid-associated lymphoid tissues. Real-time quantitative polymerase chain reaction showed transcripts of prorenin receptor, angiotensin-converting enzyme, and angiotensin II receptor 1 in the keloid tissue samples and keloid-derived primary cell lines, whereas angiotensin II receptor 2 was detected in keloid tissue samples only. Western blotting confirmed the presence of prorenin receptor, angiotensin-converting enzyme, and angiotensin II receptor 1 in the keloid-derived primary cell lines. CONCLUSION: Prorenin receptor, angiotensin-converting enzyme, angiotensin II receptor 1, and angiotensin II receptor 2 were expressed by the embryonic stem cell-like population within the keloid-associated lymphoid tissues, suggesting that this primitive population may be a potential therapeutic target by modulation of the renin-angiotensin system.


Assuntos
Células-Tronco Embrionárias/metabolismo , Queloide/metabolismo , Sistema Renina-Angiotensina/fisiologia , Adolescente , Adulto , Antígenos CD34/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Feminino , Imunofluorescência , Humanos , Queloide/patologia , Masculino , Pessoa de Meia-Idade , Fator 3 de Transcrição de Octâmero/metabolismo , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Superfície Celular/metabolismo , Regulador Transcricional ERG/metabolismo , Adulto Jovem , Receptor de Pró-Renina
15.
Plast Reconstr Surg Glob Open ; 7(4): e2170, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31321175

RESUMO

BACKGROUND: We have recently demonstrated the presence of a NANOG+/pSTAT3+/OCT4+/SOX2+/SALL4+/CD44+ embryonic stem cell (ESC)-like subpopulation localized to the endothelium and a NANOG+/pSTAT3+/SOX2+/CD44+ subpopulation outside of the endothelium, within subcutaneous VM (SCVM) and intramuscular VM (IMVM). We have also shown the expression of components of the renin-angiotensin system (RAS): (pro)renin receptor (PRR); angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1) and angiotensin II receptor 2 (ATIIR2), in both SCVM and IMVM. This study investigated whether the ESC-like subpopulations within SCVM and IMVM expressed the RAS. METHODS: Formalin-fixed paraffin-embedded sections of two representative samples from each of the seven SCVM and seven IMVM patients included in our previous studies underwent dual immunofluorescence (IF) immunohistochemical (IHC) staining for ESC marker OCT4 or SOX2 with PRR, ACE, ATIIR1, and ATIIR2. RESULTS: IF IHC staining demonstrated the expression PRR by the OCT4+ cells on the endothelium and outside the endothelium in SCVM and IMVM. ACE was expressed by the SOX2+ cells, predominantly in the endothelium in SCVM and IMVM. ATIIR1 was expressed by the SOX2+ cells on the endothelium and outside the endothelium in SCVM and IMVM. ATIIR2 was expressed by the OCT4+ endothelium and outside the endothelium in SCVM and IMVM. CONCLUSIONS: Components of the RAS are expressed by ESC-like subpopulations within both SCVM and IMVM. These primitive subpopulations may be a novel therapeutic target by manipulation of the RAS using existing medications.

16.
Plast Reconstr Surg Glob Open ; 7(5): e2228, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31333955

RESUMO

Keloid disorder (KD) is a fibroproliferative condition caused by dysregulated wound healing following wounding of the skin. The pathogenesis of KD has not been fully elucidated and current treatment is unsatisfactory. There is increasing evidence of the role of stem cells in KD. This review discusses the role of embryonic stem (ESC)-like cells and mesenchymal stem cells in the pathogenesis of KD. It is proposed that dysfunction of the ESC-like population localized to the endothelium of the microvessels and perivascular cells within the keloid-associated lymphoid tissues may give rise to the aberrant fibroblasts and myofibroblasts via a mesenchymal stem cell intermediate in keloid lesions, by undergoing an endothelial-to-mesenchymal transition. We also discuss the role of the renin-angiotensin system (RAS), the immune system, and the inflammatory response, on stem cell proliferation and differentiation. The understanding of the precise roles of these stem cells and interplay of the associated regulatory pathways could lead to the development of targeted therapy for this enigmatic and challenging condition. The demonstration of the expression of components of the RAS and cathepsins B, D, and G that constitute bypass loops of the RAS, by the ESC-like population, suggests that the primitive population may be a therapeutic target by modulation of the RAS, using existing medications.

17.
Front Surg ; 6: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157231

RESUMO

Aim: We have recently demonstrated a putative stem cell population within WHO grade I meningioma (MG) that expressed embryonic stem cell (ESC) markers OCT4, NANOG, SOX2, KLF4 and c-MYC, localized to the endothelial and pericyte layers of the microvessels. There is increasing recognition that the renin-angiotensin system (RAS) plays a critical role in stem cell biology and tumorigenesis. This study investigated the expression of components of the RAS: pro-renin receptor (PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1), and angiotensin II receptor 2 (ATIIR2) on the putative stem cell population on the microvessels of WHO grade I MG. Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining was performed on WHO grade I MG tissue samples from 11 patients for PRR, ACE, ATIIR1, and ATIIR2. Two of the MG samples subjected to DAB IHC staining underwent immunofluorescence (IF) IHC staining to investigate co-expression of each of these components of the RAS in using combinations of CD34 and ESC marker SOX2 or OCT4. NanoString mRNA expression analysis and Western blotting (WB), were performed on six snap-frozen MG tissue samples to confirm mRNA and protein expression of these proteins, respectively. Results: DAB IHC staining demonstrated expression of PRR, ACE, ATIIR1, and ATIIR2 within all 11 MG tissue samples. WB and NanoString mRNA analyses, confirmed protein and mRNA expression of these proteins, respectively. IF IHC staining showed PRR, ATIIR1 and ATIIR2 were localized to the OCT4+ and SOX2+ endothelium and the pericyte layer of MG while ACE was localized to the OCT4+ endothelium of the microvesels. Conclusion: The novel finding of the expression of PRR, ACE, ATIIR1, and ATIIR2 on the putative stem cell population on the microvessels of WHO grade I MG, suggests that these stem cells may be a potential therapeutic target by manipulation of the RAS.

18.
Pediatr Res ; 86(2): 202-207, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31091531

RESUMO

BACKGROUND: Propranolol is the preferred treatment for problematic proliferating infantile hemangioma (IH) by targeting the renin-angiotensin system (RAS) expressed by IH endothelium. (Pro)renin receptor (PRR) is a major component of the RAS associated with the canonical wnt signaling pathway. We proposed that activation of PRR by renin causes proliferation of IH. METHODS: The expression of PRR in IH tissue samples was investigated using immunohistochemical (IHC) staining and NanoString analysis. NanoString analysis was also used to confirm transcriptional expression of PRR in CD34-sorted proliferating IH-derived primary cell lines. MTT assay was utilized to determine the effect of exogenous renin on the number of viable IH cells. RT-qPCR was used to determine the effect of renin on the stem cell gene expression. RESULTS: NanoString analysis and IHC staining confirmed transcriptional and translational expression of PRR, which was localized to the non-endothelial and the endothelial IH cell populations. MTT assay demonstrated an increased number of viable IH cells by administration of renin and the effect was negated by the wnt receptor blocker dickkopf-1. CONCLUSION: Our results present a model for renin-induced increased proliferation of IH cells through PRR acting via the wnt signaling pathway, which may account for accumulation of cells in IH during the proliferative phase of the tumor.


Assuntos
Células Endoteliais/citologia , Hemangioma Capilar/metabolismo , Receptores de Superfície Celular/metabolismo , Renina/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Hemangioma Capilar/patologia , Humanos , Imuno-Histoquímica , Lactente , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Propranolol/farmacologia , Sistema Renina-Angiotensina , Células-Tronco/citologia , Células-Tronco/metabolismo , Via de Sinalização Wnt , Receptor de Pró-Renina
19.
Front Surg ; 6: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949483

RESUMO

Aim: We have recently demonstrated the presence of putative tumor stem cells (TSCs) in World Health Organization (WHO) grade I meningioma (MG) localized to the microvessels, which expresses components of the renin-angiotensin system (RAS). The RAS is known to be dysregulated and promotes tumorigenesis in many cancer types, including glioblastoma. Cathepsins B, D, and G are isoenzymes that catalyze the production of angiotensin peptides, hence providing bypass loops for the RAS. This study investigated the expression of cathepsins B, D, and G in WHO grade I MG in relation to the putative TSC population we have previously demonstrated. Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining with antibodies for cathepsins B, D, and G was performed on WHO grade I MG tissue samples from 10 patients. Three of the MG samples subjected to DAB IHC staining underwent immunofluorescence (IF) IHC staining to investigate co-expression of each of these cathepsins using combinations of smooth muscle actin (SMA) and embryonic stem cell marker OCT4. NanoString mRNA expression (n = 6) and Western blotting (WB; n = 5) analyses, and enzyme activity assays (EAAs; n = 3), were performed on snap-frozen WHO grade I MG tissue samples to confirm transcriptional activation, protein expression, and functional activity of these proteins, respectively. Results: DAB IHC staining demonstrated expression of cathepsins B, D, and G in all 10 MG samples. NanoString mRNA expression and WB analyses showed transcriptional activation and protein expression of all three cathepsins, although cathepsin G was expressed at low levels. EAAs demonstrated that cathepsin B and cathepsin D were functionally active. IF IHC staining illustrated localization of cathepsin B and cathepsin D to the endothelium and SMA+ pericyte layer of the microvessels, while cathepsin G was localized to cells scattered within the interstitium, away from the microvessels. Conclusion: Cathepsin B and cathepsin D, and to a lesser extent cathepsin G, are expressed in WHO grade I MG. Cathepsin B and cathepsin D are enzymatically active and are localized to the putative TSC population on the microvessels, whereas cathepsin G was localized to cells scattered within the interstitium, These results suggest the presence of bypass loops for the RAS, within WHO grade I MG.

20.
Front Surg ; 6: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024924

RESUMO

Background: There is a growing body of research demonstrating expression of the renin-angiotensin system (RAS) by a putative embryonic stem cell (ESC)-like population within vascular anomalies. This study investigated the expression of components of the RAS in relation to the putative ESC-like population within pyogenic granuloma (PG) that we have recently reported. Methods: PG samples from 14 patients were analyzed for the expression of components of the RAS: pro-renin receptor (PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1) and angiotensin II receptor 2 (ATIIR2), using 3,3-diaminobenzidine (DAB) immunohistochemical (IHC) staining. Immunofluorescence (IF) IHC staining was performed to localize these proteins on four of the PG samples. RT-qPCR was performed on two snap-frozen PG samples. Western blotting (WB) was performed on one snap-frozen PG sample and two PG-derived primary cell lines. Results: DAB IHC staining demonstrated the expression of ACE, PRR, ATIIR1, and ATIIR2 in all 14 PG tissue samples. RT-qPCR analysis confirmed abundant mRNA transcripts for PRR, ACE, AIITR1 and ATIIR2, relative to the housekeeping gene. WB confirmed the presence of PRR, ATIIR1, and ACE in the PG tissue sample, and PRR and ATIIR1, in the PG-derived primary cell lines. IF IHC staining demonstrated the expression of PRR, ACE, ATIIR1 on the primitive population that expressed NANOG and SOX2 on the ERG+ endothelium of the microvessels within PG. Conclusion: We have demonstrated the expression of PRR, ACE, and ATIIR1 by the putative the ESC-like population within PG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...