Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(2): 167360, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34798133

RESUMO

Phosphatidylinositol 3-phosphate (PI3P), a scaffold of membrane-associated proteins required for diverse cellular events, is produced by Vps34-containing phosphatidylinositol 3-kinase (PI3K). PI3K complex I (PI3KCI)-generated PI3P is required for macroautophagy, whereas PI3K complex II (PI3KCII)-generated PI3P is required for endosomal sorting complex required for transport (ESCRT)-mediated multi-vesicular body (MVB) formation in late endosomes. ESCRT also promotes vacuolar membrane remodeling in microautophagy after nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase in budding yeast. Whereas PI3KCI and macroautophagy are critical for the nutrient starvation response, the physiological roles of PI3KCII and microautophagy during starvation are largely unknown. Here, we showed that PI3KCII-produced PI3P on vacuolar membranes is required for microautophagy induction and survival in nutrient-stressed conditions. PI3KCII is required for Vps27 (an ESCRT-0 component) recruitment and ESCRT-0 complex formation on vacuolar surfaces after TORC1 inactivation. Forced recruitment of Vps27 onto vacuolar membranes rescued the defect in microautophagy induction in PI3KCII-deficient cells, indicating that a critical role of PI3P on microautophagy induction is Vps27 recruitment onto vacuolar surfaces. Finally, vacuolar membrane-associated Vps27 was able to recover survival during nutrient starvation in cells lacking PI3KCII or Vps27. This study revealed that the PI3KCII-PI3P-Vps27 axis on vacuolar membranes is critical for ESCRT-mediated microautophagy induction and nutrient stress adaptation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Microautofagia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Membranas Intracelulares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Nutrientes , Fosfatos de Fosfatidilinositol , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição
2.
Biochem Biophys Res Commun ; 519(2): 302-308, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31506176

RESUMO

Nucleolar proteins such as Nop1/fibrillarin are degraded by nucleophagy in nutrient-starved conditions. However, whether and how excess nucleolar proteins are removed in normal conditions is unknown. Here we show that overexpressed nucleolar protein Nop1 is toxic and degraded in nutrient-rich conditions in budding yeast. The degradation was dependent on proteasomes. The CUE domain-containing protein Def1 mediated the degradation via the CUE domain and alleviated toxicity of Nop1 overexpression. Def1 was recruited to overexpressed Nop1 in the nucleolus. Ubiquitin mutants compromised this recruitment. This study revealed that Def1 is a novel factor for ubiquitin-dependent degradation of excess nucleolar proteins.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...