Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 156: 113877, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270257

RESUMO

BACKGROUND: Dietary oxysterols are believed to be associated with the progression of non-alcoholic fatty liver disease (NAFLD). However, the molecular basis of the association between dietary oxysterols and NAFLD is poorly understood. We hypothesized that hepatic Niemann-Pick C1-Like 1 (NPC1L1), a cholesterol re-absorber from bile to the liver, would regulate hepatic oxysterol levels and affects NAFLD progression. METHODS AND RESULTS: Considering the species differences in hepatic NPC1L1 expression, we used liver-specific NPC1L1 transgenic (NPC1L1Tg) mice as a human model and demonstrated that oxysterol-rich heated cholesterol exacerbated high-fat diet-induced steatosis, an early stage of NAFLD, in a hepatic NPC1L1-dependent manner. Analyses of hepatic and biliary oxysterol levels in NPC1L1Tg mice and in vitro oxysterol uptake assays with NPC1L1-overexpressing cells revealed that NPC1L1 can uptake some, but not all, oxysterols and suppress their biliary excretion. Furthermore, in vitro and in vivo analyses revealed that 22(R)-hydroxycholesterol (22R-OHC) and 25-hydroxycholesterol (25-OHC), which are NPC1L1 substrates, were primarily involved in steatosis progression, via the activation of liver X receptor α and retinoid-related orphan receptor γ, respectively. Consistent with these results, examination of clinical specimens revealed that among the 14 major oxysterols analyzed, plasma concentrations of 22R-OHC and 25-OHC were significantly positively correlated with hepatic fat accumulation in humans. CONCLUSIONS: Among the major dietary oxysterols, 22R-OHC and 25-OHC are particularly potent in promoting the progression of hepatic steatosis in a hepatic NPC1L1-dependent manner.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Oxisteróis , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxisteróis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fígado/metabolismo , Colesterol
2.
Circ J ; 83(2): 471-480, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30568065

RESUMO

BACKGROUND: Warfarin is an anticoagulant drug used to prevent thromboembolic disorders, but its pharmacological effect is affected by co-administered drugs. Therefore, careful management of warfarin-related drug-drug interactions (DDIs) is necessary for its safety and effectiveness. Recently, intestinal vitamin K1absorption through the Niemann-Pick C1-like 1 (NPC1L1)-mediated pathway was found to affect the pharmacological effect of warfarin. This study aimed to identify high-frequency warfarin-related DDIs in a clinical setting and elucidate their mechanism(s) in terms of changes in NPC1L1 expression and/or activity. Methods and Results: Prednisolone was the most frequently suspected drug in retrospective surveys of medical records of patients who experienced warfarin-related DDIs. Prednisolone significantly increased the international normalized ratio of prothrombin time (PT-INR) values in warfarin-treated patients. To demonstrate the involvement of NPC1L1 in warfarin-prednisolone DDI, we conducted an in vitro vitamin K1uptake assay using NPC1L1-overexpressing cells and found that prednisolone inhibited NPC1L1-mediated vitamin K1uptake. Additionally, we found that prednisolone downregulates NPC1L1 in a glucocorticoid receptor α-dependent manner. CONCLUSIONS: Co-administration of warfarin and prednisolone frequently enhanced the anticoagulant effect of warfarin in a clinical setting. Prednisolone-mediated suppression of NPC1L1 expression and activity could be the mechanism of DDI between warfarin and prednisolone. To manage warfarin therapy, the potential of concomitant drugs to change its anticoagulant effect through NPC1L1-related mechanisms merits consideration.


Assuntos
Interações Medicamentosas , Proteínas de Membrana Transportadoras/metabolismo , Prednisolona/farmacologia , Varfarina/uso terapêutico , Células CACO-2 , Humanos , Coeficiente Internacional Normatizado , Prednisolona/uso terapêutico , Tempo de Protrombina , Vitamina K 1/agonistas , Vitamina K 1/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...