Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Adv ; 9(27): eadg6983, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418524

RESUMO

Plants can regenerate their bodies via de novo establishment of shoot apical meristems (SAMs) from pluripotent callus. Only a small fraction of callus cells is eventually specified into SAMs but the molecular mechanisms underlying fate specification remain obscure. The expression of WUSCHEL (WUS) is an early hallmark of SAM fate acquisition. Here, we show that a WUS paralog, WUSCHEL-RELATED HOMEOBOX 13 (WOX13), negatively regulates SAM formation from callus in Arabidopsis thaliana. WOX13 promotes non-meristematic cell fate via transcriptional repression of WUS and other SAM regulators and activation of cell wall modifiers. Our Quartz-Seq2-based single cell transcriptome revealed that WOX13 plays key roles in determining cellular identity of callus cell population. We propose that reciprocal inhibition between WUS and WOX13 mediates critical cell fate determination in pluripotent cell population, which has a major impact on regeneration efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Homeodomínio , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Meristema/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Regeneração/genética
3.
J Org Chem ; 87(19): 12733-12740, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36073788

RESUMO

2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) has been extensively utilized as a radical scavenger or an oxidation catalyst. In contrast, TEMPO as a hydrogen atom transfer (HAT) catalyst has rarely been studied. Here, we report that TEMPO, as the HAT catalyst, homolytically cleaves benzylic or allylic C-H bonds to give the corresponding alkyl radicals. Benefiting from the dual roles played by TEMPO as the HAT catalyst and the radical scavenger, the highly challenging aerobic dehydrogenation of activated alkanes to alkenes is successfully developed.


Assuntos
Alcenos , Hidrogênio , Alcanos , Alcenos/química , Óxidos N-Cíclicos , Hidrogênio/química , Estrutura Molecular
4.
Biology (Basel) ; 11(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336794

RESUMO

Boron neutron capture therapy (BNCT) is a non-invasive therapeutic technique for treating malignant tumors, however, methods to evaluate its therapeutic efficacy and adverse reactions are lacking. High mobility group box 1 (HMGB1) is an inflammatory molecule released during cell death. Therefore, we aimed to investigate HMGB1 as a biomarker for BNCT response, by examining the early responses of tumor cells to 10B-boronophenylalanine (BPA)-based BNCT in the Kyoto University Nuclear Reactor. Extracellular HMGB1 release was significantly increased in human squamous carcinoma SAS and melanoma A375 cells 24 h after neutron irradiation but not after γ-irradiation. At 3 days post-BPA-based BNCT irradiation in a SAS xenograft mouse model, plasma HMGB1 levels were higher than those in the non-irradiation control, and HMGB1 was detected in both nuclei and cytoplasm in tumor cells. Additionally, increased plasma HMGB1 levels post-BNCT irradiation were detected even when tumors decreased in size. Collectively, these results indicate that the extracellular HMGB1 release occurs at an early stage and is persistent when tumors are reduced in size; therefore, it is a potential biomarker for evaluating the therapeutic response during BNCT.

5.
Plant Physiol ; 188(1): 425-441, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34730809

RESUMO

Highly efficient tissue repair is pivotal for surviving damage-associated stress. Plants generate callus upon injury to heal wound sites, yet regulatory mechanisms of tissue repair remain elusive. Here, we identified WUSCHEL-RELATED HOMEOBOX 13 (WOX13) as a key regulator of callus formation and organ adhesion in Arabidopsis (Arabidopsis thaliana). WOX13 belongs to an ancient subclade of the WOX family, and a previous study shows that WOX13 orthologs in the moss Physcomitrium patens (PpWOX13L) are involved in cellular reprogramming at wound sites. We found that the Arabidopsis wox13 mutant is totally defective in establishing organ reconnection upon grafting, suggesting that WOX13 is crucial for tissue repair in seed plants. WOX13 expression rapidly induced upon wounding, which was partly dependent on the activity of an AP2/ERF transcription factor, WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1). WOX13 in turn directly upregulated WIND2 and WIND3 to further promote cellular reprogramming and organ regeneration. We also found that WOX13 orchestrates the transcriptional induction of cell wall-modifying enzyme genes, such as GLYCOSYL HYDROLASE 9Bs, PECTATE LYASE LIKEs and EXPANSINs. Furthermore, the chemical composition of cell wall monosaccharides was markedly different in the wox13 mutant. These data together suggest that WOX13 modifies cell wall properties, which may facilitate efficient callus formation and organ reconnection. Furthermore, we found that PpWOX13L complements the Arabidopsis wox13 mutant, suggesting that the molecular function of WOX13 is partly conserved between mosses and seed plants. This study provides key insights into the conservation and functional diversification of the WOX gene family during land plant evolution.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Parede Celular/fisiologia , Genes Homeobox , Organogênese Vegetal/genética , Regeneração/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
6.
Fish Shellfish Immunol ; 114: 20-27, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33857621

RESUMO

To search immune defense proteins in skin mucus of Japanese flounder fed with a diet containing high concentration of ascorbic acid, we carried out 2D-PAGE and compared the resolved pattern of proteins between control group that fed commercial diet and ascorbic acid supplemented group (AsA group) fed a diet supplemented with high concentration of ascorbic acid (2,000 mg/kg) for 7 days. The results revealed that there were many proteins exhibited distinct increase in AsA group. Among them, 6 regions that showed a dramatic elevation were chosen for protein identification using LC-MS/MS analysis and Mascot database search. Six proteins were identified, i.e. serotransferrin (Sero), transferrin (Trans), warm temperature acclimation-related 65 kDa protein (Wap65), complement component c3 (C3), hemoglobin beta-A chain (Hbß) and apolipoprotein A-1 (Apo). Quantitative RT-PCR analysis showed that the mRNA level of Hbß in epidermis of AsA group gave much higher increase (11.6 folds) than control group; the levels of Sero/Trans, Wap65, C3 and Apo showed no apparent difference between the two groups. The mRNA levels of wap65 and c3 in the liver and Apo in the kidney of AsA group exhibited significant increase in comparison to control group. In the case of secreted immunoglobulin M (IgM) and lysozyme (lyz), no difference of the mRNA levels of IgM in epidermis, gill, kidney, spleen and intestine, and lyz in epidermis, gill, spleen and intestine, was observed. The results of in situ hybridization confirmed the elevation of Hbß mRNA level in the epidermis tissue of AsA group. Our present study provided additional evidence showing the effectiveness of AsA in activating innate immune defense system in skin mucosal tissue of fish.


Assuntos
Ácido Ascórbico/farmacologia , Proteínas de Peixes/metabolismo , Linguado/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Muco/metabolismo , Animais , Ácido Ascórbico/administração & dosagem , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Fígado/química , Fígado/metabolismo
8.
Nat Plants ; 6(9): 1091-1097, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32868888

RESUMO

Diel and seasonal oscillations are two major environmental changes in nature. While organisms cope with the former by the well-characterized mechanism of the circadian clock1,2, there is limited information on the molecular mechanisms underlying long-term responses to the latter3-5. Histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone modification, imparts stability and plasticity to gene regulation during developmental transitions6-9. Here we studied the seasonal and diel dynamics of H3K27me3 at the genome-wide level in a natural population of perennial Arabidopsis halleri and compared these dynamics with those of histone H3 lysine 4 trimethylation (H3K4me3), an active histone modification. Chromatin immunoprecipitation sequencing revealed that H3K27me3 exhibits seasonal plasticity and diel stability. Furthermore, we found that the seasonal H3K27me3 oscillation is delayed in phase relative to the H3K4me3 oscillation, particularly for genes associated with environmental memory. Our findings suggest that H3K27me3 monitors past transcriptional activity to create long-term gene expression trends during organismal responses over weeks in natural fluctuating environments.


Assuntos
Adaptação Fisiológica , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Interação Gene-Ambiente , Histonas/genética , Estações do Ano , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Histonas/metabolismo , Japão
9.
Nat Commun ; 11(1): 4079, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796936

RESUMO

DNA methylation is an epigenetic modification that specifies the basic state of pluripotent stem cells and regulates the developmental transition from stem cells to various cell types. In flowering plants, the shoot apical meristem (SAM) contains a pluripotent stem cell population which generates the aerial part of plants including the germ cells. Under appropriate conditions, the SAM undergoes a developmental transition from a leaf-forming vegetative SAM to an inflorescence- and flower-forming reproductive SAM. While SAM characteristics are largely altered in this transition, the complete picture of DNA methylation remains elusive. Here, by analyzing whole-genome DNA methylation of isolated rice SAMs in the vegetative and reproductive stages, we show that methylation at CHH sites is kept high, particularly at transposable elements (TEs), in the vegetative SAM relative to the differentiated leaf, and increases in the reproductive SAM via the RNA-dependent DNA methylation pathway. We also show that half of the TEs that were highly methylated in gametes had already undergone CHH hypermethylation in the SAM. Our results indicate that changes in DNA methylation begin in the SAM long before germ cell differentiation to protect the genome from harmful TEs.


Assuntos
Metilação de DNA , Meristema/crescimento & desenvolvimento , Meristema/genética , Oryza/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Elementos de DNA Transponíveis , Biologia do Desenvolvimento , Epigenômica , Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
10.
Curr Biol ; 30(4): 573-588.e7, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32004456

RESUMO

Genome packaging by nucleosomes is a hallmark of eukaryotes. Histones and the pathways that deposit, remove, and read histone modifications are deeply conserved. Yet, we lack information regarding chromatin landscapes in extant representatives of ancestors of the main groups of eukaryotes, and our knowledge of the evolution of chromatin-related processes is limited. We used the bryophyte Marchantia polymorpha, which diverged from vascular plants circa 400 mya, to obtain a whole chromosome genome assembly and explore the chromatin landscape and three-dimensional genome organization in an early diverging land plant lineage. Based on genomic profiles of ten chromatin marks, we conclude that the relationship between active marks and gene expression is conserved across land plants. In contrast, we observed distinctive features of transposons and other repetitive sequences in Marchantia compared with flowering plants. Silenced transposons and repeats did not accumulate around centromeres. Although a large fraction of constitutive heterochromatin was marked by H3K9 methylation as in flowering plants, a significant proportion of transposons were marked by H3K27me3, which is otherwise dedicated to the transcriptional repression of protein-coding genes in flowering plants. Chromatin compartmentalization analyses of Hi-C data revealed that repressed B compartments were densely decorated with H3K27me3 but not H3K9 or DNA methylation as reported in flowering plants. We conclude that, in early plants, H3K27me3 played an essential role in heterochromatin function, suggesting an ancestral role of this mark in transposon silencing.


Assuntos
Cromatina/fisiologia , Elementos de DNA Transponíveis/fisiologia , Embriófitas/fisiologia , Evolução Molecular , Heterocromatina/fisiologia
11.
Genes (Basel) ; 10(7)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319612

RESUMO

: DNA methylation has been considered a stable epigenetic mark but may respond to fluctuating environments. However, it is unclear how they behave in natural environments. Here, we analyzed seasonal patterns of genome-wide DNA methylation in a single clone from a natural population of the perennial Arabidopsishalleri. The genome-wide pattern of DNA methylation was primarily stable, and most of the repetitive regions were methylated across the year. Although the proportion was small, we detected seasonally methylated cytosines (SeMCs) in the genome. SeMCs in the CHH context were detected predominantly at repetitive sequences in intergenic regions. In contrast, gene-body CG methylation (gbM) itself was generally stable across seasons, but the levels of gbM were positively associated with seasonal stability of RNA expression of the genes. These results suggest the existence of two distinct aspects of DNA methylation in natural environments: sources of epigenetic variation and epigenetic marks for stable gene expression.


Assuntos
Metilação de DNA , Meio Ambiente , Interação Gene-Ambiente , Plantas/genética , Estações do Ano , Ilhas de CpG , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica/métodos
12.
Nat Commun ; 8(1): 2161, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255196

RESUMO

The arms race between parasitic sequences and their hosts is a major driving force for evolution of gene control systems. Since transposable elements (TEs) are potentially deleterious, eukaryotes silence them by epigenetic mechanisms such as DNA methylation. Little is known about how TEs counteract silencing to propagate during evolution. Here, we report behavior of sequence-specific anti-silencing proteins used by Arabidopsis TEs and evolution of those proteins and their target sequences. We show that VANC, a TE-encoded anti-silencing protein, induces extensive DNA methylation loss throughout TEs. Related VANC proteins have evolved to hypomethylate TEs of completely different spectra. Targets for VANC proteins often form tandem repeats, which vary considerably between related TEs. We propose that evolution of VANC proteins and their targets allow propagation of TEs while causing minimal host damage. Our findings provide insight into the evolutionary dynamics of these apparently "selfish" sequences. They also provide potential tools to edit epigenomes in a sequence-specific manner.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Arabidopsis/genética , Sequência de Bases , Metilação de DNA , Genoma de Planta/genética , Motivos de Nucleotídeos/genética , Homologia de Sequência do Ácido Nucleico , Transativadores/genética
13.
J Biol Chem ; 292(29): 12126-12138, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28546425

RESUMO

The α-N-acetylgalactosaminidase from the probiotic bacterium Bifidobacterium bifidum (NagBb) belongs to the glycoside hydrolase family 129 and hydrolyzes the glycosidic bond of Tn-antigen (GalNAcα1-Ser/Thr). NagBb is involved in assimilation of O-glycans on mucin glycoproteins by B. bifidum in the human gastrointestinal tract, but its catalytic mechanism has remained elusive because of a lack of sequence homology around putative catalytic residues and of other structural information. Here we report the X-ray crystal structure of NagBb, representing the first GH129 family structure, solved by the single-wavelength anomalous dispersion method based on sulfur atoms of the native protein. We determined ligand-free, GalNAc, and inhibitor complex forms of NagBb and found that Asp-435 and Glu-478 are located in the catalytic domain at appropriate positions for direct nucleophilic attack at the anomeric carbon and proton donation for the glycosidic bond oxygen, respectively. A highly conserved Asp-330 forms a hydrogen bond with the O4 hydroxyl of GalNAc in the -1 subsite, and Trp-398 provides a stacking platform for the GalNAc pyranose ring. Interestingly, a metal ion, presumably Ca2+, is involved in the recognition of the GalNAc N-acetyl group. Mutations at Asp-435, Glu-478, Asp-330, and Trp-398 and residues involved in metal coordination (including an all-Ala quadruple mutant) significantly reduced the activity, indicating that these residues and the metal ion play important roles in substrate recognition and catalysis. Interestingly, NagBb exhibited some structural similarities to the GH101 endo-α-N-acetylgalactosaminidases, but several critical differences in substrate recognition and reaction mechanism account for the different activities of these two enzymes.


Assuntos
Acetilgalactosamina/metabolismo , Proteínas de Bactérias/metabolismo , Bifidobacterium bifidum/enzimologia , Coenzimas/metabolismo , Glicosídeo Hidrolases/metabolismo , Metais/metabolismo , alfa-N-Acetilgalactosaminidase/metabolismo , Acetilgalactosamina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Coenzimas/química , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Ligantes , Metais/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Probióticos , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , alfa-N-Acetilgalactosaminidase/antagonistas & inibidores , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/genética
14.
EMBO J ; 36(8): 970-980, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28100676

RESUMO

Heterochromatin is marked by methylation of lysine 9 on histone H3 (H3K9me). A puzzling feature of H3K9me is that this modification localizes not only in promoters but also in internal regions (bodies) of silent transcription units. Despite its prevalence, the biological significance of gene-body H3K9me remains enigmatic. Here we show that H3K9me-associated removal of H3K4 monomethylation (H3K4me1) in gene bodies mediates transcriptional silencing. Mutations in an Arabidopsis H3K9 demethylase gene IBM1 induce ectopic H3K9me2 accumulation in gene bodies, with accompanying severe developmental defects. Through suppressor screening of the ibm1-induced developmental defects, we identified the LDL2 gene, which encodes a homolog of conserved H3K4 demethylases. The ldl2 mutation suppressed the developmental defects, without suppressing the ibm1-induced ectopic H3K9me2. The ectopic H3K9me2 mark directed removal of gene-body H3K4me1 and caused transcriptional repression in an LDL2-dependent manner. Furthermore, mutations of H3K9 methylases increased the level of H3K4me1 in the gene bodies of various transposable elements, and this H3K4me1 increase is a prerequisite for their transcriptional derepression. Our results uncover an unexpected role of gene-body H3K9me2/H3K4me1 dynamics as a mediator of heterochromatin silencing and epigenome differentiation.


Assuntos
Arabidopsis , Inativação Gênica , Heterocromatina , Histonas , Mutação , Processamento de Proteína Pós-Traducional , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação
15.
Plant Cell Physiol ; 58(2): 375-384, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013279

RESUMO

A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation. The heat activation of ONSEN transcripts was not significantly up-regulated in tissue culture compared with that in heat-stressed seedlings, indicating that the transposition of ONSEN was regulated independently of the transcript level. RdDM-related genes were up-regulated by heat stress in both tissue culture and seedlings. The level of DNA methylation of ONSEN did not show any change in tissue culture, and the amount of ONSEN-derived small RNAs was not affected by heat stress. The results indicated that the transposition of ONSEN was regulated by an alternative mechanism in addition to the RdDM-mediated epigenetic regulation in tissue culture. We applied the tissue culture-induced transposition of ONSEN to Japanese radish, an important breeding species of the family Brassicaceae. Several new insertions were detected in a regenerated plant derived from heat-stressed tissues and its self-fertilized progeny, revealing the possibility of molecular breeding without genetic modification.


Assuntos
Retroelementos/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Temperatura Alta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Cultura de Tecidos
16.
Nat Commun ; 7: 11950, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27320502

RESUMO

Interest in platinum-chain complexes arose from their unusual oxidation states and physical properties. Despite their compositional diversity, isolation of crystalline chains has remained challenging. Here we report a simple crystallization technique that yields a series of dimer-based 1D platinum chains. The colour of the Pt(2+) compounds can be switched between yellow, orange and blue. Spontaneous oxidation in air is used to form black Pt(2.33+) needles. The loss of one electron per double salt results in a metallic state, as supported by quantum chemical calculations, and displays conductivity of 11 S cm(-1) at room temperature. This behaviour may open up a new avenue for controllable platinum chemistry.

18.
Plant J ; 83(6): 1069-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26243209

RESUMO

Methylation patterns of plants are unique as, in addition to the methylation at CG dinucleotides that occurs in mammals, methylation also occurs at non-CG sites. Genes are methylated at CG sites, but transposable elements (TEs) are methylated at both CG and non-CG sites. The role of non-CG methylation in transcriptional silencing of TEs is being extensively studied at this time, but only very rare transpositions have been reported when non-CG methylation machineries have been compromised. To understand the role of non-CG methylation in TE suppression and in plant development, we characterized rice mutants with changes in the chromomethylase gene, OsCMT3a. oscmt3a mutants exhibited a dramatic decrease in CHG methylation, changes in the expression of some genes and TEs, and pleiotropic developmental abnormalities. Genome resequencing identified eight TE families mobilized in oscmt3a during normal propagation. These TEs included tissue culture-activated copia retrotransposons Tos17 and Tos19 (Lullaby), a pericentromeric clustered high-copy-number non-autonomous gypsy retrotransposon Dasheng, two copia retrotransposons Osr4 and Osr13, a hAT-tip100 transposon DaiZ, a MITE transposon mPing, and a LINE element LINE1-6_OS. We confirmed the transposition of these TEs by polymerase chain reaction (PCR) and/or Southern blot analysis, and showed that transposition was dependent on the oscmt3a mutation. These results demonstrated that OsCMT3a-mediated non-CG DNA methylation plays a critical role in development and in the suppression of a wide spectrum of TEs. These in planta mobile TEs are important for studying the interaction between TEs and the host genome, and for rice functional genomics.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Elementos de DNA Transponíveis , Mutação , Oryza/genética , Proteínas de Plantas/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Giberelinas/genética , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Retroelementos
19.
PLoS Genet ; 11(4): e1005154, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25902052

RESUMO

Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3' regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome.


Assuntos
Proteínas de Arabidopsis/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Retroalimentação Fisiológica , Genoma de Planta , Fatores de Transcrição/genética , Arabidopsis , Proteínas de Arabidopsis/biossíntese , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Citosina , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/biossíntese , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Mutação , Fatores de Transcrição/biossíntese
20.
Biochem Biophys Res Commun ; 447(1): 32-7, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24680821

RESUMO

Enzymes acting on ß-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of ß-l-arabinofuranosyl oligosaccharides in plant cells. Recently, a ß-l-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked ß-l-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and ß-l-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional ß-sandwich domains, with one ß-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn(2+) coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the ß-l-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.


Assuntos
Domínio Catalítico , Glicosídeo Hidrolases/química , Sequência de Aminoácidos , Arabinose/análogos & derivados , Arabinose/metabolismo , Bifidobacterium/enzimologia , Cisteína/química , Ácido Glutâmico/química , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Teoria Quântica , Alinhamento de Sequência , Especificidade por Substrato , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...