Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Regen Med ; 13(1): 21-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603381

RESUMO

This study aimed to evaluate the in vitro biological effectiveness of chitosan microparticles crosslinked with sodium tripolyphosphate (TPP) in combination with activated pure platelet-rich plasma (aP-PRP) as an injectable composite scaffold for growth factors release, cell proliferation and osteogenic differentiation. Two main novelties were addressed in the field of scaffolds in regenerative medicine: the first is the approach including simultaneously the three vertices of the proliferation triangle formed by the capabilities genic progenitor cells, conductive scaffolds and inductive growth factors, which are provided by platelet rich plasma (PRP); secondly, the approach of an injectable composite scaffolds formed by the fibrin network from aP-PRP and the chitosan microparticles crosslinked with TPP. The microparticles were prepared by vortexing the chitosan and TPP solutions. The ionic crosslinking of chitosan with TPP was made at mass ratios of 2:1, 5:1, and 10:1 at pH 4.0. P-PRP was obtained via the controlled centrifugation of whole blood. The composite scaffolds were prepared by adding the microparticles to immediately activated P-PRP. The results showed that the microparticles had adequate physicochemical and mechanical properties for injection. Furthermore, the microparticles controlled the release of growth factors from P-PRP. The proliferation of human adipose-derived mesenchymal stem cells was lower than in aP-PRP alone but significant at a 2:1 chitosan-TPP mass ratio. Osteogenic differentiation was stimulated at all studied mass ratios, as indicated by the alkaline phosphatase activity. These results offer perspectives for optimizing the composite scaffold, and to prove its potential as an injectable scaffold in regenerative medicine.

2.
Langmuir ; 31(22): 6020-6, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25978073

RESUMO

Although wormlike micelles (WLM) were first described more than 30 years ago, many aspects of their formation process are still unclear. Herein, a systematic experimental investigation of the process for wormlike micelle (WLM) formation in mixtures of tetradecyltrimethylammonium bromide (C14TAB) and salicylate (2-hydroxybenzoate) was carried out. This system was used as a model to investigate the conditions for the formation of the giant aggregate. For comparison, the other two isomers of salicylate (3- and 4-hydroxybenzoate) were also investigated, once in these cases wormlike micelles are not formed. The studies were based on calorimetric titration, static light scattering, and rheological measurements. Enthalpy changes upon titration of C14TAB into 2-hydroxybenzoate solutions revealed a highly cooperative and exothermic process that was associated with micelle growth. The size of the aggregates, obtained by static light scattering measurements, confirms the shape transition. In addition, the correlation of these two sets of results with measurements of micelle charge surface indicates that this transition occurs around the point of charge neutralization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...