Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(59): 37011-37018, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496407

RESUMO

Dynamic nuclear polarization (DNP) is an emerging cutting-edge method of acquiring metabolic and physiological information in vivo. We recently developed γ-glutamyl-[1-13C]glycine (γ-Glu-[1-13C]Gly) as a DNP nuclear magnetic resonance (NMR) molecular probe to detect γ-glutamyl transpeptidase (GGT) activity in vivo. However, the detailed enzymatic and magnetic properties of this probe remain unknown. Here, we evaluate a γ-Glu-Gly scaffold and develop a deuterated probe, γ-Glu-[1-13C]Gly-d 2, that can realize a longer lifetime of the hyperpolarized signal. We initially evaluated the GGT-mediated enzymatic conversion of γ-Glu-Gly and the magnetic properties of 13C-enriched γ-Glu-Gly (γ-Glu-[1-13C]Gly and γ-[5-13C]Glu-Gly) to support the validity of γ-Glu-[1-13C]Gly as a DNP NMR molecular probe for GGT. We then examined the spin-lattice relaxation time (T 1) of γ-Glu-[1-13C]Gly and γ-Glu-[1-13C]Gly-d 2 under various conditions (D2O, PBS, and serum) and confirmed that the T 1 of γ-Glu-[1-13C]Gly and γ-Glu-[1-13C]Gly-d 2 was maintained for 30 s (9.4 T) and 41 s (9.4 T), respectively, even in serum. Relaxation analysis of γ-Glu-[1-13C]Gly revealed a significant contribution of the dipole-dipole interaction and the chemical shift anisotropy relaxation pathway (71% of the total relaxation rate at 9.4 T), indicating the potential of deuteration and the use of a lower magnetic field for realizing a longer T 1. In fact, by using γ-Glu-[1-13C]Gly-d 2 as a DNP probe, we achieved longer retention of the hyperpolarized signal at 1.4 T.

2.
RSC Adv ; 9(32): 18183-18190, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35515260

RESUMO

Parahydrogen-induced polarization (PHIP) is a rapid and cost-effective hyperpolarization technique using transition metal-catalysed hydrogenation with parahydrogen. We examined rhodium catalysts and their kinetic studies, rarely considered in the research of current PHIP. It emerged that rhodium complexes with electron-donating bisphosphine ligands, with a dicyclohexylphosphino group, appear to be more effective than conventional rhodium catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...