Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 53(1): 27-31, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15635224

RESUMO

Poly(ethylene glycol)-grafted liposomes (PEG-liposomes) were prepared from dipalmitoylphosphatidylcholine (DPPC) with various amounts of distearoyl-N-monomethoxy poly(ethylene glycol)-succinyl-phosphatidylethanolamines (DSPE-PEG) with PEG molecular weights of 1000, 2000, 3000 and 5000. The effects of DSPE-PEG concentration on the permeability of PEG-liposomes were investigated using carboxyfluorescein (CF). In the gel state, the CF leakage from PEG-liposomes was decreased with increasing mole fractions of DSPE-PEG for all PEG molecular weights. In the liquid-crystalline state, the CF leakage from PEG-liposomes containing DSPE-PEG1000 gradually increased with increasing mole fractions of DSPE-PEG, while that of PEG-liposomes whose molecular weight in PEG units was above 2000 rapidly decreased by the addition of DSPE-PEG. Furthermore, no effect of PEG molecular weight on CF leakage was observed. The relationship between the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) (or 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH)) and the mole fraction of DSPE-PEG for PEG-liposomes was also investigated. No significant changes in fluorescence polarization of DPH for liposomal bilayer membranes was observed in the gel and liquid-crystalline states due to the addition of DSPE-PEG, while that of TMA-DPH was decreased compared with that of liposomes without DSPE-PEG in both states.


Assuntos
Lipossomos/administração & dosagem , Lipossomos/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Relação Dose-Resposta a Droga , Permeabilidade/efeitos dos fármacos
2.
J Biomed Mater Res A ; 70(2): 179-85, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15227662

RESUMO

Control of the cell surface allows modulation of the cell's biological response, producing practical applications and satisfying scientific interests. Consequently, to meet such goals and interests, diverse approaches were developed in cell surface engineering techniques. Poly(ethylene glycol) (PEG) intermediates were widely employed to modify proteins, enzymes, artificial surfaces, liposomes, and drugs for practical usage. PEGylation was also used for modification of cell surface properties. A method was recently developed for the rapid incorporation of proteins into mammalian cell membranes using lipid-PEG(n) derivatives under physiological conditions. This is a rapid and homogeneous method to incorporate lipid-PEG(n), which was used as a model to study the modification of cellular properties and cell-cell interactions. Because the stability of molecules incorporated into the cell surface shows the usefulness of the anchoring technique, it was also investigated whether potential factors such as time, the concentration of the incorporated lipid-PEG(n), and the type of medium affect this incorporation. At concentrations greater than 10 microM, when dual typed lipid-PEG(n) was incorporated into erythrocytes, antigenic recognition was dramatically attenuated, resulting in the successful development of stealth cells.


Assuntos
Materiais Biocompatíveis , Membrana Celular/metabolismo , Lipídeos , Polietilenoglicóis , Animais , Membrana Eritrocítica/metabolismo , Corantes Fluorescentes , Humanos , Técnicas In Vitro , Teste de Materiais , Ovinos
3.
Biotechnol Prog ; 20(3): 897-904, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15176897

RESUMO

The cell membrane is an important interface for communication with extracellular events, and incorporation of bioactive substances, such as antibodies and receptors, into the cell membrane may enhance the potential abilities of cells. Gene manipulation, chemical modification of membrane proteins, and cell surface painting using a GPI anchor have been performed to introduce substances into cell membranes. Furthermore, many lipid anchors have also been used to modify lipid membranes such as liposomes. In this study, we have focused on developing an easy and rapid method for anchoring of substances including macromolecular proteins into the membranes of living mammalian cells. We employed a single oleyl chain derivative coupled with hydrophilic poly(ethylene glycol) (PEG90, the ethyleneoxide (EO) unit is 90) to facilitate solubilization in water. This water-soluble derivative was designated Biocompatible Anchor for Membrane (BAM). Some proteins (streptavidin, EGFP and an antibody) were coupled with BAM90 at the distal terminal of PEG and rapidly (within a few minutes) anchored into the membranes of various cells (NIH3T3, 32D, Ba/F3, hybridoma 9E10). However, the anchored BAM90 disappeared from the cell membranes within 4-5 h in serum-free culture media, and moreover, the retention time of anchoring was shortened (1-2 h) in culture medium containing 10% FBS. We further prepared a dioleylphosphatidylethanolamine (DOPE)-PEG derivative (DOPE-BAM80, the EO unit is 80) as a double oleyl chain derivative for comparison with the single oleyl chain derivative, BAM90. The retention time of anchored DOPE-BAM80 was longer than that of BAM90 and more than 8 h in culture media with and without 10% serum. Furthermore, the treatment time of DOPE-BAM80 for anchoring was nearly as short (within a few minutes) as that of BAM90. In addition, both types of BAMs, BAM90 and DOPE-BAM80, showed no cytotoxicity. Therefore, DOPE-BAM80 is useful for protein anchoring to cells. Although the utilization of BAM90 is considered to be limited, it is expected to useful in restricted environments, for example, in tissues such as the cornea, peritoneum, bladder, and various mucosae, which are less exposed to serum. Thus, we suggest the possibility that both types of BAM can be applied to cell surface engineering.


Assuntos
Materiais Biocompatíveis/química , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Polietilenoglicóis/química , Adsorção , Animais , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Humanos , Mamíferos , Ligação Proteica , Solubilidade
4.
Chem Pharm Bull (Tokyo) ; 51(7): 815-20, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12843588

RESUMO

The effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the membrane characteristics of liposomes were investigated by differential scanning calorimetry (DSC), freeze-fracture electron microscopy (FFEM), fluorescence polarization measurement and permeability measurement using carboxyfluorescein (CF). PEG-liposomes were prepared from mixtures of dipalmitoyl phosphatidylcholine (DPPC) and distearoyl phosphatidylethanolamines with covalently attached PEG molecular weights of 1000, 2000, 3000 and 5000 (DSPE-PEG). DSC and FFEM results showed that the addition of DSPE-PEG to DPPC in the preparation of liposomes caused the lateral phase separation both in the gel and liquid-crystalline states. The fluidity in the hydrocarbon region of liposomal bilayer membranes was not significantly changed by the addition of DSPE-PEG, while that in the interfacial region was markedly increased. From these results, it was anticipated that the CF leakage from PEG-liposomes is accelerated compared with DPPC liposomes. However, CF leakage from liposomes containing DSPE-PEG with a 0.060 mol fraction was depressed compared with regular liposomes, and the leakage decreased with increasing PEG chain length. Furthermore, the CF leakage from liposomes containing DSPE-PEG with a 0.145 mol fraction was slightly increased compared with that of liposomes containing DSPE-PEG with a 0.060 mol fraction. It is suggested that the solute permeability from the PEG-liposomes was affected by not only properties of the liposomal bilayer membranes such as phase transition temperature, phase separation and membrane fluidity, but also the PEG chain of the liposomal surface.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Polietilenoglicóis/química , Lipossomos/farmacocinética , Permeabilidade/efeitos dos fármacos , Polietilenoglicóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...