Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 46(4): 1419-25, 2007 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17291125

RESUMO

Redox reactions involving the [Cu(dmp)2]2+/+ couple (dmp = 2,9-dimethyl-1,10-phenanthroline) in acetonitrile were examined at elevated pressures up to 200 MPa. Activation volumes were determined as -8.8 and -6.3 cm3 mol-1 for the reduction cross-reaction by [Co(bipy)3]2+ (bipy = 2,2'-bipyridine) and for the oxidation cross-reaction by [Ni(tacn)2]3+ (tacn = 1,4,7-triazacyclononane), respectively. The activation volume for the hypothetical gated mode of the self-exchange reaction estimated from the reduction cross-reaction was -13.9 cm3 mol-1, indicating extensive electrostrictive rearrangement of solvent molecules around the CuII complex during the change in the coordination geometry before the electron-transfer step. On the other hand, the activation volume for the self-exchange reaction estimated from the oxidation cross-reaction was -2.7 +/- 1.5 cm3 mol-1. Although this value was within the range that can be interpreted by the concept of the ordinary concerted process, from theoretical considerations it was concluded that the reverse (oxidation) cross-reaction of the gated reduction reaction of the [Cu(dmp)2(CH3CN)]2+/[Cu(dmp)2]+ couple proceeds through the product excited state while the direct self-exchange reaction between [Cu(dmp)2(CH3CN)]2+ and [Cu(dmp)2]+ proceeds through an ordinary concerted process.


Assuntos
Pressão do Ar , Cobre/química , Compostos Organometálicos/química , Solventes/química , Transporte de Elétrons , Cinética , Estrutura Molecular , Oxirredução
2.
Chemistry ; 12(20): 5328-33, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16622884

RESUMO

Thermal Z to E isomerization reactions of azobenzene and 4-dimethylamino-4'-nitroazobenzene were examined in three ionic liquids of general formula 1-R-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (R = butyl, pentyl, and hexyl). The first-order rate constants and activation energies for the reactions of azobenzene measured in these ionic liquids were consistent with those measured in ordinary organic solvents, which indicated that the slow isomerization through the inversion mechanism with a nonpolar transition state was little influenced by the solvent properties, such as the viscosity and dielectric constant, of ionic liquids. On the other hand, the rate constants and the corresponding frequency factors of the Arrhenius plot were significantly reduced for the isomerization of 4-dimethylamino-4'-nitroazobenzene in ionic liquids compared with those for the isomerization in ordinary organic molecular solvents with similar dielectric properties. Although these ionic liquids are viscous, the apparent viscosity dependence of the rate constant could not be explained either by the Kramers-Grote-Hynes model or by the Agmon-Hopfield model for solution reactions. It is proposed that the positive and the negative charge centers of a highly polar rotational transition state are stabilized by the surrounding anions and cations, respectively, and that the ions must be rearranged so as to form highly ordered solvation shells around the charge centers of the reactant in the transition state. This requirement for the orderly solvation in the transition state results in unusually small frequency factors of 10(4)-10(7) s(-1).

3.
Inorg Chem ; 45(3): 1349-55, 2006 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-16441147

RESUMO

Controlled-potential electrochemical oxidation of cis-[Ru(ROCS2)2(PPh3)2] (R = Et, iPr) yielded corresponding Ru(III) complexes, and the crystal structures of cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2](PF6) were determined. Both pairs of complexes exhibited almost identical coordination structures. The Ru-P distances in trans-[Ru(III)(ROCS2)2(PPh3)2](PF6) [2.436(3)-2.443(3) A] were significantly longer than those in cis-[Ru(II)(ROCS2)2(PPh3)2] [2.306(1)-2.315(2) A]: the smaller ionic radius of Ru(III) than that of Ru(II) stabilizes the trans conformation for the Ru(III) complex due to the steric requirement of bulky phosphine ligands while mutual trans influence by the phosphine ligands induces significant elongation of the Ru(III)-P bonds. Cyclic voltammograms of the cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2]+ complexes in dichloromethane solution exhibited typical dual redox signals corresponding to the cis-[Ru(ROCS2)2(PPh3)2](+/0) (ca. +0.15 and +0.10 V vs ferrocenium/ferrocene couple for R = Et and iPr, respectively) and to trans-[Ru(ROCS2)2(PPh3)2](+/0) (-0.05 and -0.15 V vs ferrocenium/ferrocene for R = Et and iPr, respectively) couples. Analyses on the basis of the Nicholson and Shain's method revealed that the thermal disappearance rate of transient trans-[Ru(ROCS2)2(PPh3)2] was dependent on the concentration of PPh3 in the bulk: the rate constant for the intramolecular isomerization reaction of trans-[Ru(iPrOCS2)2(PPh3)2] was determined as 0.338 +/- 0.004 s(-1) at 298.3 K (deltaH* = 41.8 +/- 1.5 kJ mol(-1) and deltaS* = -114 +/- 7 J mol(-1) K(-1)), while the dissociation rate constant of coordinated PPh3 from the trans-[Ru(iPrOCS2)2(PPh3)2] species was estimated as 0.113 +/- 0.008 s(-1) at 298.3 K (deltaH* = 97.6 +/- 0.8 kJ mol(-1) and deltaS* = 64 +/- 3 J mol(-1) K(-1)), by monitoring the EC reaction (electrode reaction followed by chemical processes) at different concentrations of PPh3 in the bulk. It was found that the trans to cis isomerization reaction takes place via the partial dissociation of iPrOCS2(-) from Ru(II), contrary to the previous claim that it takes place by the twist mechanism.

4.
Dalton Trans ; (6): 1066-78, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15739009

RESUMO

[Cu(2,9-dimethyl-1,10-phenanthroline)(2)](2+) and [Cu(6,6'-dimethyl-2,2'-bipyridine)(2)](2+/+) complexes with no coordinated solvent molecule were synthesized and the crystal structures were analyzed: the coordination geometry around the Cu(i) center was in the D(2d) symmetry while a D(2) structure was observed for the four-coordinate Cu(ii) complexes. Coordination of a water or an acetonitrile molecule was found in the trigonal plane of the five-coordinate Cu(ii) complex in the Tbp(trigonal bipyramidal) structure. Spectrophotometric analyses revealed that the D(2) structure of the Cu(ii) complex was retained in nitromethane, although a five-coordinate Tbp species (green in color), was readily formed upon dissolution of the solid (reddish brown) in acetonitrile. The electron self-exchange reaction between D(2d)-Cu(I) and D(2)-Cu(II), observed by the NMR method, was very rapid with k(ex)=(1.1 +/- 0.2) x 10(5) kg mol(-1) s(-1) at 25 degrees C (DeltaH*= 15.6 +/- 1.3 kJ mol(-1) and DeltaS*=-96 +/- 4 J mol(-1) K(-1)), which was more than 10 times larger than that reported for the self-exchange reaction between D(2d)-Cu(I) and Tbp-Cu(II) in acetonitrile. The cross reduction reactions of D(2)-Cu(ii) by ferrocene and decamethylferrocene in nitromethane exhibited a completely gated behavior, while the oxidation reaction of D(2d)-Cu(i) by [Ni(1,4,7-triazacyclononane)(2)](3+) in nitromethane estimated an identically large self-exchange rate constant to that directly obtained by the NMR method. The electron self-exchange rate constant estimated from the oxidation cross reaction in 50% v/v acetonitrile-nitromethane mixture was 10 times smaller than that observed in pure nitromethane. On the basis of the Principle of the Least Motion (PLM) and the Symmetry Rules, it was concluded that gated behaviors observed for the reduction reactions of the five-coordinate Cu(ii)-polypyridine complexes are related to the high-energy C(2v)--> D(2d) conformational change around Cu(ii), and that the electron self-exchange reactions of the Cu(ii)/(i) couples are always adiabatic through the C(2v) structures for both Cu(ii) and Cu(i) since the conformational changes between D(2d), D(2) and C(2v) structures for Cu(i) as well as the conformational change between Tbp and C(2v) structures for Cu(ii) are symmetry-allowed. The completely gated behavior observed for the reduction reactions of D(2)-Cu(ii) species in nitromethane was attributed to the very slow conformational change from the ground-state D(2) to the entatic D(2d) structure that is symmetry-forbidden for d(9) metal complexes: the very slow back reaction, the forbidden conformational change from entatic D(2d) to the ground-state D(2) structure, ensures that the rate of the reduction reaction is independent of the concentration of the reducing reagent.


Assuntos
Cobre/química , Metano/análogos & derivados , Nitroparafinas/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Cristalografia por Raios X , Compostos Ferrosos/química , Cinética , Ligantes , Metalocenos , Metano/química , Modelos Moleculares , Oxirredução , Solventes/química
5.
Dalton Trans ; (12): 1862-6, 2004 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15381993

RESUMO

The reaction volume corresponding to the self-exchange process of the [Ni(tacn)(2)](3+/2+) couple was determined in aqueous acidic solution. Theoretical equations on the basis of the Mean Spherical Approximation were proposed for the estimation of reaction volumes for M(n+/(n- 1)+) couples in solution, and the calculated reaction volumes were compared with the experimentally estimated values. The activation volume for the [Ni(tacn)(2)](3+/2+) couple was determined in the acidic condition from the cross reaction of [Ni(tacn)(2)](2+) and [Fe(o-phen)(3)](3+) at elevated pressures. The agreement of the experimentally estimated activation volume for the [Ni(tacn)(2)](3+/2+) couple, -8.2 +/- 2.4 cm(3) mol(-1), with the theoretically calculated value, -7.5 cm(3) mol(-1), within the allowed uncertainty (+/-1 cm(3) mol(-1)) indicates that the electron self-exchange reaction of this redox couple obeys the Marcusian behavior in aqueous acidic solution.

6.
Dalton Trans ; (11): 1703-7, 2004 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15252565

RESUMO

Homogeneous electron transfer reactions of the Cu(II) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) with various oxidizing reagents were spectrophotometrically investigated in acetonitrile. The reaction products were confirmed to be the pi-cation radicals of the corresponding Cu(II)-porphyrin complexes on the basis of the electronic spectra and the redox potentials of the complexes. The rate of the electron transfer reaction between the Cu(II)-porphyrin complex and solvated Cu(2+) was determined as a function of the water concentration under the pseudo first-order conditions where Cu(2+) is in large excess over the Cu(II)-porphyrin complex. The decrease in the pseudo first-order rate constant with increasing the water concentration was attributed to the stepwise displacement of acetonitrile in [Cu(AN)(6)](2+)(AN = acetonitrile) by water, and it was concluded that only the Cu(2+) species fully solvated by acetonitrile, [Cu(AN)(6)](2+), possesses sufficiently high redox potential for the oxidation of Cu(ii)-OEP and Cu(ii)-TPP. The reactions of the Cu(II)-porphyrin complexes with other oxidizing reagents such as [Ni(tacn)(2)](3+)(tacn = 1,4,7-triazacyclononane) and [Ru(bpy)(3)](3+)(bpy = 2,2'-bipyridine) were too fast to be followed by a conventional stopped-flow technique. Marcus cross relation for the outer-sphere electron transfer reaction was used to estimate the rate constants of the electron self-exchange reaction between Cu(II)-porphyrin and its pi-cation radical: log(k/M(-1) s(-1))= 9.5 +/- 0.5 for TPP and log(k/M(-1) s(-1))= 11.1 +/- 0.5 for OEP at 25.0 degrees C. Such large electron self-exchange rate constants are typical for the porphyrin-centered redox reactions for which very small inner- and outer-sphere reorganization energies are required.


Assuntos
Acetonitrilas/química , Cobre/química , Metaloporfirinas/química , Oxidantes/química
7.
Inorg Chem ; 42(17): 5320-9, 2003 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-12924904

RESUMO

Reactions of Cp(2)TiCl(2) (Cp = eta(5)-cyclopentadienide) with 2 or 1 equiv of hybrid P-S ligands (L), (CH(3))(2)P(CH(2))(n)()S(-) (n = 2, dmpet; n = 3, dmppt), produced new dicyclopentadienyltitanium(IV) complexes with L, Cp(2)Ti(L-kappaS)(2) (1, L = dmpet; 2, L = dmppt) and [Cp(2)Ti(L-kappa(2)S,P)]BPh(4) (3, L = dmpet; 4, L = dmppt). The Ti(III) complexes, Cp(2)Ti(L-kappa(2)S,P) (5, L = dmpet; 6, L = dmppt), were prepared by the reaction of Cp(2)Ti(eta(3)-C(3)H(5)) with 1 equiv of L. The structures of complexes 1-6 were confirmed by X-ray diffraction analyses. It was found that complexes 3 and 5 were isostructural around Ti(IV) and Ti(III) centers: the Ti(IV)-S bond length in 3 (2.3498(9) A) is shorter by 0.14 A than Ti(III)-S in 5 (2.4877(7) A), while Ti(IV)-P (2.534(1) A) was merely 0.05 A shorter than Ti(III)-P (2.5844(7) A). The redox potential between 3 and 5 in acetonitrile was -1.14 V vs the ferricinium/ferrocene couple. A heterobimetallic complex that has the frame of complex 1, [Cp(2)Ti(dmpet)(2)Cu]PF(6) (7), was also isolated and structurally characterized: the Ti-Cu distance (2.95(1) A) was shorter than that in [Cp(2)Ti(SC(2)H(4)PPh(2))(2)Cu]BF(4), previously reported by White and Stephan. Structural characterization was also carried out for CpTi(dmpet-kappaS)(2)(dmpet-kappa(2)S,P) (8) and CpTiCl(2)(dmppt-kappa(2)S,P) (9), which were obtained by the reactions of Cp(or Cp)TiCl(3) (Cp = eta(5)-C(5)Me(5)(-)) with n equiv (n = 1-3) of L. The mutual site-exchange reaction between phosphorus atoms on a coordinated dmpet in the kappa(2)S,P mode and on two other coordinated dmpet's in the kappaS mode within complex 8 was analyzed by the variable-temperature (31)P[(1)H] dynamic NMR method. The kinetic parameters for this process, k(ex)(298) = 1.9 x 10(5) s(-)(1), DeltaH = 48 kJ mol(-)(1), and DeltaS = 17 J mol(-)(1) K(-)(1), as well as the rather long Ti(IV)-P distance (2.652(1) A), indicate the fluxional nature of the coordination geometry in complex 8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...