Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861110

RESUMO

Tetrodotoxin (TTX), a pufferfish toxin, is a highly potent neurotoxin that has been found in a wide variety of animals. The TTX-bearing flatworm Planocera multitentaculata possesses a large amount of TTX and is considered responsible for the toxification of TTX-bearing animals such as pufferfish (Takifugu and Chelonodon) and the toxic goby Yongeichthys criniger. However, the mechanism underlying TTX accumulation in flatworms remains unclear. Previous studies have been limited to identifying the distribution of TTX in multiple organs, such as the digestive organs, genital parts, and the remaining tissues of flatworms. Here, we performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and immunohistochemical staining using a monoclonal anti-TTX antibody to elucidate the detailed localization of TTX in the tissues and organs of the flatworm P. multitentaculata. Immunohistochemical staining for P. multitentaculata showed that TTX-specific signals were detected not only in the ovaries and pharynx but also in many other tissues and organs, whereas no signal was detected in the brain, Lang's vesicle, and genitalia. In addition, combined with LC-MS/MS analysis, it was revealed for the first time that TTX accumulates in high concentrations in the basement membrane and epidermis. These findings robustly support the hypotheses of "TTX utilization protection from predators."

2.
Mar Biotechnol (NY) ; 26(3): 500-510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630353

RESUMO

Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.


Assuntos
Tetrodotoxina , Animais , Tetrodotoxina/análise , Tetrodotoxina/metabolismo , Japão , Platelmintos/genética , Platelmintos/metabolismo , Tetraodontiformes , Takifugu/metabolismo , Takifugu/genética , Cromatografia Líquida , Espectrometria de Massas , Ilhas , População do Leste Asiático
3.
Lipids ; 59(2): 55-63, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299442

RESUMO

Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disorder. Insulin resistance and oxidative stress are associated with T2DM development. The hypothesis that patients with T2DM show excess accumulation of lipids, such as ceramides (Cers) and diacylglycerols (DAGs), in their skeletal muscles has been widely supported; however, detailed lipidomic data at the molecular species level are limited. Therefore, in this study, we aimed to investigate the in vitro dynamics of total lipids, including phospholipids (PLs), sphingolipids, and neutral lipids, in palmitic acid-induced insulin-resistant C2C12 skeletal muscle cells. Our data demonstrated that the profiles of not only Cers and DAGs but also those of PLs showed considerably differences after palmitate treatment. We found that PL synthesis reduced and PL degradation increased after palmitate treatment. These findings may aid in the development of treatments to ameliorate muscle dysfunction caused by lipid accumulation in muscles.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Palmitatos/farmacologia , Fosfolipídeos/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Lipidômica , Transdução de Sinais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Resistência à Insulina/fisiologia , Ceramidas/metabolismo
4.
Toxicon ; 237: 107539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042308

RESUMO

Tetrodotoxin (TTX) is a potent neurotoxin that binds to voltage-gated sodium channels and blocks the passage of sodium ions. TTX is widely distributed in both terrestrial and marine organisms, and the toxic puffers are believed to accumulate TTX through the food chain. Although pufferfish was previously thought to be attracted by TTX, recent finding from electroolfactogram (EOG) studies have indicated that the olfactory epithelium of T. alboplumbeus responded to 5, 6, 11-trideoxyTTX (TDT), but not to TTX itself. In this study, we examined behavioral experiments for Takifugu rubripes to distinguish between TTX and TDT under static and flow-through conditions. Our data clearly suggested that T. rubripes juveniles were attracted to TDT, not TTX. Moreover, we determined that the minimum effective dose of TDT to attract the puffer was 1-2 nmol of TDT under static conditions and 50-60 nmol of TDT under flow-through conditions. Following the experiments under static conditions, numerous bite marks by the pufferfish were found solely on the agarose gel infused with TDT. Based on these finding, we hypothesize that the pufferfish are attracted to TDT derived from prey, leading them effectively become toxic.


Assuntos
Neurotoxinas , Takifugu , Animais , Takifugu/metabolismo , Tetrodotoxina/toxicidade , Tetrodotoxina/metabolismo , Neurotoxinas/metabolismo , Cadeia Alimentar
5.
Chemosphere ; 336: 139214, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327821

RESUMO

Tetrodotoxin (TTX)-bearing fish are thought to accumulate TTXs in their bodies through a food chain that begins with marine bacteria. However, the mechanism of TTXs transfer between prey and predators in the food chain remains unclear and the reasons for regional differences in pufferfish toxicity are also unknown. To investigate these matters, we collected juveniles of four species of pufferfish, Takifugu alboplumbeus, Takifugu flavipterus, Takifugu stictonotus, and Chelonodon patoca, from various locations in the Japanese Islands, and subjected them to liquid chromatography-tandem mass spectrometry analysis for TTX and its analog 5,6,11-trideoxyTTX (TDT). Concentrations of these substances tended to be higher in pufferfish juveniles collected from the Sanriku coastal area (Pacific coast of northern Japan) than in those from other locations. Juveniles had higher concentrations of TTX at all locations than of TDT. Mitochondrial cytochrome c oxidase subunit I (COI) sequences specific to the TTX-bearing flatworm, Planocera multitentaculata, were detected in the intestinal contents of up to 100% of pufferfish juveniles from various sampling sites, suggesting that P. multitentaculata was widely involved in the toxification of the juveniles in the coastal waters of Japan. A toxification experiment was conducted on three species of pufferfish juveniles (T. alboplumbeus, Takifugu rubripes and C. patoca) using TTX-bearing flatworm eggs harboring equal amounts of TTX and TDT. The TTX content of juveniles fed on flatworm eggs was found to be more than twice that of TDT, suggesting that pufferfish preferentially incorporate TTX compared to TDT.


Assuntos
Takifugu , Tetrodotoxina , Animais , Platelmintos , Espectrometria de Massas em Tandem/métodos , Tetrodotoxina/química , Tetraodontiformes , Japão
6.
Mar Drugs ; 21(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37103347

RESUMO

Tetrodotoxin (TTX), also known as pufferfish toxin, is an extremely potent neurotoxin thought to be used as a biological defense compound in organisms bearing it. Although TTX was thought to function as a chemical agent for defense and anti-predation and an attractant for TTX-bearing animals including pufferfish, it has recently been demonstrated that pufferfish were also attracted to 5,6,11-trideoxyTTX, a related compound, rather than TTX alone. In this study, we attempted to estimate the roles of TTXs (TTX and 5,6,11-trideoxyTTX) in the pufferfish, Takifugu alboplumbeus, through examining the location of TTXs in various tissues of spawning pufferfish from Enoshima and Kamogawa, Japan. TTXs levels in the Kamogawa population were higher than those in the Enoshima population, and there was no significant difference in the amount of TTXs between the sexes in either population. Individual differences were greater in females than in males. However, the location of both substances in tissues differed significantly between sexes: male pufferfish accumulated most of their TTX in the skin and liver and most of their 5,6,11-trideoxyTTX in the skin, whereas females accumulated most of their TTX and 5,6,11-trideoxyTTX in the ovaries and skin.


Assuntos
Takifugu , Tetraodontiformes , Animais , Feminino , Masculino , Tetrodotoxina/toxicidade , Tetrodotoxina/análise , Pele/química , Fígado/química , Neurotoxinas/análise
7.
Mar Biotechnol (NY) ; 25(5): 666-676, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36648572

RESUMO

Tetrodotoxin (TTX), or pufferfish toxin, has been frequently detected in edible bivalves around the world during the last decade and is problematic in food hygiene and safety. It was reported recently that highly concentrated TTX was detected in the midgut gland of the akazara scallop Chlamys (Azumapecten) farreri subsp. akazara collected in coastal areas of the northern Japanese archipelago. The toxification of the bivalve was likely to involve the larvae of the flatworm, Planocera multitentaculata. However, the overall status of bivalve TTX toxification has not been elucidated. In this study, 14 species/subspecies of bivalves from various Japanese waters were subjected to LC-MS/MS analysis to reveal TTX toxification state, demonstrating that the Pectinidae, including C. farreri akazara, Chlamys farreri nipponensis, Chlamys (Mimachlamys) nobilis, and Mizuhopecten yessoensis, accumulated TTX in their midgut gland. Many individuals of C. farreri akazara and C. farreri nipponensis were found with high concentrations of TTX, while C. nobilis and M. yessoensis exhibited low concentrations. The extent of TTX accumulation in C. farreri akazara and C. farreri nipponensis varied widely by region and season. Curiously, no other bivalve species investigated in this study showed evidence of TTX. These results suggest that monitoring for TTX, like other shellfish toxins, is necessary to ensure that pectinid bivalves are a safe food resource.


Assuntos
Pectinidae , Platelmintos , Tetrodotoxina , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Tetrodotoxina/análise
8.
Mar Biotechnol (NY) ; 24(6): 1158-1167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36322281

RESUMO

The toxic flatworm, Planocera multitentaculata, possesses highly concentrated tetrodotoxin (TTX), also known as pufferfish toxin, throughout its life cycle, including the egg and larval stages. Additionally, TTX analogues, 5,6,11-trideoxyTTX and 11-norTTX-6(S)-ol, have also been detected in the flatworm. The high concentration of TTX in the eggs and larvae appears to be for protection against predation, and 11-norTTX-6(S)-ol in the pharyngeal tissue in the adults is likely used to sedate or kill prey during predation. However, information on the role of 5,6,11-trideoxyTTX, a potential important biosynthetic intermediate of TTX, in the toxic flatworm is lacking. Here, we aimed to determine the region of localization of TTX and its analogues in the flatworm body, understand their pharmacokinetics during maturation, and speculate on their function. Flatworm specimens in four stages of maturity, namely juvenile, mating, spawning, and late spawning, were subjected to LC-MS/MS analysis, using the pharyngeal tissue, oocytes in seminal receptacle, sperm, and tissue from 12 other sites. Although TTX was consistently high in the pharyngeal tissue throughout maturation, it was extremely high in the oocytes during the spawning period. Meanwhile, 5,6,11-trideoxyTTX was almost undetectable in the pharyngeal part throughout the maturation but was very abundant in the oocytes during spawning. 11-norTTX-6(S)-ol consistently localized in the pharyngeal tissue. Although the localization of TTX and its analogues was approximately consistent with the MS imaging data, TTX and 11-norTTX-6(S)-ol were found to be highly localized in the parenchyma surrounding the pharynx, which suggests the parenchyma is involved in the accumulation and production of TTXs.


Assuntos
Platelmintos , Animais , Masculino , Tetrodotoxina , Cromatografia Líquida/métodos , Distribuição Tecidual , Espectrometria de Massas em Tandem/métodos , Sêmen/metabolismo , Larva/metabolismo
9.
Toxicon ; 216: 169-173, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843466

RESUMO

The marine polyclad flatworm Planocera multitentaculata is known to possess high levels of tetrodotoxin (TTX), but the presence of TTX analogues in the species has been unexplored. In this study, TTX and several analogues such as 5,6,11-trideoxyTTX, monodeoxyTTXs, dideoxyTTXs, and 11-norTTX-6(S)-ol were identified in three adults and egg plates of P. multitentaculata using high resolution liquid chromatography-mass spectrometry (HR-LC/MS) for the first time.


Assuntos
Platelmintos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas , Tetrodotoxina/análise
10.
Toxins (Basel) ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35202177

RESUMO

Tetrodotoxin (TTX)-bearing fish ingest TTX from their preys through the food chain and accumulate TTX in their bodies. Although a wide variety of TTX-bearing organisms have been reported, the missing link in the TTX supply chain has not been elucidated completely. Here, we investigated the composition of TTX and 5,6,11-trideoxyTTX in juveniles of the pufferfish, Chelonodon patoca, and toxic goby, Yongeichthys criniger, using LC-MS/MS, to resolve the missing link in the TTX supply chain. The TTX concentration varied among samples from different localities, sampling periods and fish species. In the samples from the same locality, the TTX concentration was significantly higher in the toxic goby juveniles than in the pufferfish juveniles. The concentration of TTX in all the pufferfish juveniles was significantly higher than that of 5,6,11-trideoxyTTX, whereas the compositional ratio of TTX and 5,6,11-trideoxyTTX in the goby was different among sampling localities. However, the TTX/5,6,11-trideoxyTTX ratio in the goby was not different among samples collected from the same locality at different periods. Based on a species-specific PCR, the detection rate of the toxic flatworm (Planocera multitentaculata)-specific sequence (cytochrome c oxidase subunit I) also varied between the intestinal contents of the pufferfish and toxic goby collected at different localities and periods. These results suggest that although the larvae of the toxic flatworm are likely to be responsible for the toxification of the pufferfish and toxic goby juveniles by TTX, these fish juveniles are also likely to feed on other TTX-bearing organisms depending on their habitat, and they also possess different accumulation mechanisms of TTX and 5,6,11-trideoxyTTX.


Assuntos
Venenos de Peixe/análise , Venenos de Peixe/química , Venenos de Peixe/toxicidade , Peixes , Tetraodontiformes , Tetrodotoxina/análise , Tetrodotoxina/toxicidade , Animais , Cromatografia Líquida , Japão , Espectrometria de Massas em Tandem
11.
Mar Drugs ; 19(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34940669

RESUMO

Toxic crabs of the family Xanthidae contain saxitoxins (STXs) and/or tetrodotoxin (TTX), but the toxin ratio differs depending on their habitat. In the present study, to clarify within reef variations in the toxin profile of xanthid crabs, we collected specimens of the toxic xanthid crab Zosimus aeneus and their sampling location within a single reef (Yoshihara reef) on Ishigaki Island, Okinawa Prefecture, Japan, in 2018 and 2019. The STXs/TTX content within the appendages and viscera or stomach contents of each specimen was determined by instrumental analyses. Our findings revealed the existence of three zones in Yoshihara reef; one in which many individuals accumulate extremely high concentrations of STXs (northwestern part of the reef; NW zone), another in which individuals generally have small amounts of TTX but little STXs (central part of the reef; CTR zone), and a third in which individuals generally exhibit intermediate characteristics (southeastern part of the reef; SE zone). Furthermore, light microscopic observations of the stomach contents of crab specimens collected from the NW and CTR zones revealed that ascidian spicules of the genus Lissoclinum were dominant in the NW zone, whereas those of the genus Trididemnum were dominant in the CTR zone. Although the toxicity of these ascidians is unknown, Lissoclinum ascidians are considered good candidate source organisms of STXs harbored by toxic xanthid crabs.


Assuntos
Braquiúros , Toxinas Marinhas/química , Animais , Organismos Aquáticos , Demografia , Japão , Oceano Pacífico
12.
Mitochondrial DNA B Resour ; 6(10): 2852-2855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514152

RESUMO

We determined the complete mitochondrial genome of the Atlantic Gnomefish, Scombrops oculatus (Scombropidae). The total length of mitochondrial DNA (mtDNA) was 16,515 bp and included 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one control region. The gene arrangement of S. oculatus was identical to those of three Japanese scombropid species and those of other teleosts. The phylogenetic analysis using the whole mtDNA, excluding the control region, indicates the Atlantic species is distinct from the Japanese clade, whereas that using cytochrome c oxidase subunit I gene showed the Atlantic species is most closely related to the African species.

13.
Aquat Toxicol ; 237: 105908, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34273772

RESUMO

Tetrodotoxin (TTX), also known as pufferfish toxin, has been detected in marine edible bivalves worldwide. In this study, several bivalve species, Azumapecten farreri subsp. akazara, Patinopecten yessoensis and Mytilus galloprovincialis, collected from the Pacific side of the northern Japanese Islands, were studied for the accumulation of TTX in the presence of toxic planocerid larvae. LC-MS/MS analysis demonstrated that TTX was detected only in the midgut gland of A. farreri subsp. akazara. Toxic flatworm-specific PCR and direct sequencing of the amplicons showed that the DNA fragments of the Planocera multitentaculata COI gene were detected in the gut contents of the toxified bivalves. The planocerid larvae were also detected in the environmental seawaters. Toxification experiments in the aquarium demonstrated that the mussel M. galloprovincialis was also toxified by feeding on the toxic flatworm larvae. These results suggest that the source of TTX accumulation in edible bivalves is toxic flatworm larvae.


Assuntos
Mytilus , Platelmintos , Poluentes Químicos da Água , Animais , Cromatografia Líquida , Larva , Espectrometria de Massas em Tandem , Tetrodotoxina/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Mar Drugs ; 19(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477411

RESUMO

Several polyclad flatworm species are known to contain high levels of tetrodotoxin (TTX), but currently TTX-bearing flatworms seem to be restricted to specific Planocera lineages belonging to the suborder Acotylea. During our ongoing study of flatworm toxins, high concentrations of TTXs were detected for the first time in the flatworm Prosthiostomum trilineatum, suborder Cotylea, from the coastal area of Hayama, Kanagawa, Japan. Toxin levels were investigated by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), revealing that this species contains comparable concentrations of toxins as seen in planocerid flatworms such as Planocera multitentaculata. This finding indicated that there may be other species with significant levels of TTXs. The distribution of TTXs among other flatworm species is thus of great interest.


Assuntos
Platelmintos/metabolismo , Tetrodotoxina/isolamento & purificação , Animais , Cromatografia Líquida de Alta Pressão , Japão , Espectrometria de Massas em Tandem , Tetrodotoxina/análise , Tetrodotoxina/química
15.
Mol Phylogenet Evol ; 156: 107021, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248204

RESUMO

Nibblers (family Girellidae) are reef fishes that are mostly distributed in the Indo-Pacific, with one exception: Girella stuebeli, which is found in the Cabo Verde Archipelago, in the Atlantic Ocean. We capitalized on this unusual distribution to study the evolutionary history of the girellids, and determine the relationship between G. stuebeli and the remaining nibbler taxa. Based on thousands of genomic markers (RAD sequences), we identified the closest relatives of G. stuebeli as being a clade of three species endemic to the northwestern Pacific, restricted to the Sea of Japan and vicinity. This clade diverged from G. stuebeli approximately 2.2 Mya. Two alternative potential routes of migration may explain this affinity: a western route, from the Tropical Eastern Pacific and the Tropical Western Atlantic, and an eastern route via the Indian Ocean and Southern Africa. The geological history and oceanography of the regions combined with molecular data presented here, suggest that the eastern route of invasion (via the Indian Ocean and Southern Africa) is a more likely scenario.


Assuntos
Evolução Biológica , Recifes de Corais , Perciformes/fisiologia , Animais , Oceano Atlântico , Cabo Verde , Calibragem , Geografia , Mitocôndrias/genética , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Fatores de Tempo
16.
Front Microbiol ; 11: 1641, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765467

RESUMO

Fungi are a rich source of natural products with biological activities. In this study, we evaluated viral effects on secondary metabolism of the rice blast fungus Magnaporthe oryzae using an isolate of APU10-199A co-infected with three types of mycoviruses: a totivirus, a chrysovirus, and a partitivirus. Comparison of the secondary metabolite profile of APU10-199A with that of the strain lacking the totivirus and chrysovirus showed that a mycotoxin tenuazonic (TeA) acid was produced in a manner dependent on the mycoviruses. Virus reinfection experiments verified that TeA production was dependent on the totivirus. Quantitative reverse transcription PCR and RNA-sequencing analysis indicated the regulatory mechanism underlying viral induction of TeA: the totivirus activates the TeA synthetase gene TAS1 by upregulating the transcription of the gene encoding a Zn(II)2-Cys6-type transcription factor, TAS2. To our knowledge, this is the first report that confirmed mycovirus-associated regulation of secondary metabolism at a transcriptional level by viral reinfection. Because only treatment with dimethyl sulfoxide has been reported to trigger TeA production in this fungus without gene manipulation, our finding highlights the potential of mycoviruses as an epigenomic regulator of fungal secondary metabolism.

17.
Mar Biotechnol (NY) ; 22(6): 812-823, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32488506

RESUMO

Oncorhynchus masou, including subspecies of Oncorhynchus masou masou (yamame) and Oncorhynchus masou ishikawae (amago), is one of the salmonid groups impacted by human activity such as dam construction and release of non-native salmonids. In this study, we investigated the genetic structure of O. masou populations in the Sakawa and Sagami Rivers, Japan, by sequencing the mitochondrial control region. We hoped to identify genetically the O. masou populations specific to and originally native to Kanagawa Prefecture, where the two subspecies are thought to be present. The populations found in the upstream tributaries, where there has been no human impact and no upstream migration of fishes, were assumed to be descendants of the local O. masou populations in both river systems, and the morphological features seen here were similar to amago and yamame. However, both populations were genetically related to amago. In addition, only six haplotypes were detected in 315 individuals collected from 20 localities in the two river systems. Furthermore, haplotype diversity and nucleotide diversity of these populations were low, and high FST values were observed. These results suggest that the population size is restricted and genetic diversity is decreasing in the O. masou populations of the Sakawa and Sagami Rivers.


Assuntos
Variação Genética , Oncorhynchus/anatomia & histologia , Oncorhynchus/genética , Animais , DNA Mitocondrial , Haplótipos , Japão , Oncorhynchus/classificação , Filogenia , Rios
18.
Mar Biotechnol (NY) ; 22(6): 805-811, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32415408

RESUMO

Tetrodotoxin (TTX), also known as pufferfish toxin, causes a respiratory disorder by blocking neurotransmission, with voltage-gated sodium channel inhibition on muscle and nerve tissues. The toxin is widely distributed across vertebrates, invertebrates and bacteria. Therefore, it is generally thought that TTX in pufferfish accumulates via the food webs, beginning with marine bacteria as a primary producer. Polyclad flatworms in the genus Planocera are also known to be highly toxic, TTX-bearing organisms. Unlike the case of pufferfish, the source of TTX in these flatworms is unknown. In this study, taxonomical distribution patterns of TTX were investigated for acotylean flatworms from coastal waters using molecular phylogenetic analysis and high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). A maximum likelihood tree based on the 28S rRNA gene sequence showed that the flatworms belonged to several different lineages among the genera Planocera, Stylochus, Paraplanocera, Discocelis, Notocomplana, Notoplana, Callioplana and Peudostylochus. After LC-MS/MS analysis, the distribution of TTX was mapped onto the molecular phylogenetic tree. TTX-bearing flatworm species were seen to be restricted to specific Planocera lineages, suggesting that the TTX-bearing flatworm species have common genes for TTX-accumulating mechanisms.


Assuntos
Platelmintos/química , Platelmintos/classificação , Tetrodotoxina/isolamento & purificação , Animais , Japão , Filogenia , Platelmintos/genética , RNA Ribossômico 28S/genética , Tetrodotoxina/química
19.
Chemosphere ; 249: 126217, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088461

RESUMO

Tetrodotoxin (TTX), a potent neurotoxin, is found in various phylogenetically diverse taxa. In marine environments, the pufferfish is at the top of the food chain among TTX-bearing organisms. The accumulation of TTX in the body of pufferfish appears to be of the food web that begins with bacteria. It is known that toxic pufferfishes possess TTX from the larval/juvenile stage. However, the source of the TTX is unknown because the maternally sourced TTX is extremely small in quantity. Therefore, the TTX has to be obtained from other organisms or directly from the environment. Here, we report evidence that the source of TTX for toxic fish juveniles including the pufferfish (Chelonodon patoca) and the goby (Yongeichthys criniger) is in the food organisms, as seen in their gut contents. Next generation sequencing analysis for the mitochondrial COI gene showed that the majority of the sequence recovered from intestinal contents of these toxic fishes belonged to the flatworm Planocera multitentaculata, a polyclad flatworm containing highly concentrated TTX from the larval stage. PCR specific to P. multitentaculata also showed that DNA encoding the planocerid COI gene was strongly detected in the intestinal contents of the goby and pufferfish juveniles. Additionally, the planocerid specific COI sequence was detected in the environmental seawater collected from the water around the sampling locations for TTX-bearing fish. These results suggest that planocerid larvae are the major TTX supplier for juveniles of TTX-bearing fish species.


Assuntos
Platelmintos/metabolismo , Tetraodontiformes/metabolismo , Tetrodotoxina/metabolismo , Animais , Cadeia Alimentar , Larva , Perciformes , Filogenia
20.
Org Lett ; 22(4): 1254-1258, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32022565

RESUMO

An extensively N-methylated linear nonapeptide heptavalinamide A (1) was isolated from the marine cyanobacterium Symploca sp. collected at Kabira Reef of Ishigaki Island, Okinawa. The amino acid sequence of 1 was assigned by interpretation of 2D NMR and MS/MS data. The absolute configurations of the constituent amino acids were determined by the application of Marfey's method. A method to assign the configuration of N,N-dimethylvaline by LCMS is discussed.


Assuntos
Cianobactérias/química , Peptídeos/química , Valina/análise , Cromatografia Líquida , Espectrometria de Massas , Metilação , Conformação Molecular , Peptídeos/isolamento & purificação , Valina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...