Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-465714

RESUMO

We are in the midst of the historic coronavirus infectious disease 2019 (COVID-19) pandemic caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2). Although countless efforts to control the pandemic have been attempted--most successfully, vaccination1-3--imbalances in accessibility to vaccines, medicines, and diagnostics among countries, regions, and populations have been problematic. Camelid variable regions of heavy chain-only antibodies (VHHs or nanobodies)4 have unique modalities: they are smaller, more stable, easier to customize, and, importantly, less expensive to produce than conventional antibodies5, 6. We present the sequences of nine alpaca nanobodies that detect the spike proteins of four SARS-CoV-2 variants of concern (VOCs)--namely, the alpha, beta, gamma, and delta variants. We show that they can quantify or detect spike variants via ELISA and lateral flow, kinetic, flow cytometric, microscopy, and Western blotting assays7. The panel of nanobodies broadly neutralized viral infection by pseudotyped SARS-CoV-2 VOCs. Structural analyses showed that a P86 clone targeted epitopes that were conserved yet unclassified on the receptor-binding domain (RBD) and located inside the N-terminal domain (NTD). Human antibodies have hardly accessed both regions; consequently, the clone buries hidden crevasses of SARS-CoV-2 spike proteins undetected by conventional antibodies and maintains activity against spike proteins carrying escape mutations.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-309849

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). While the development of specific treatments and a vaccine is urgently needed, functional analyses of SARS-CoV-2 have been limited by the lack of convenient mutagenesis methods. In this study, we established a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. Notably, the construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (~5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. We hope that our reverse genetics system will contribute to the further understanding of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...