Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(35): e202401296, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641990

RESUMO

To fill the need for environmentally sensitive fluorescent unnatural amino acids able to operate in the red region of the spectrum, we have designed and synthesized Alared, a red solvatochromic and fluorogenic amino acid derived from the Nile Red chromophore. The new unnatural amino acid can be easily integrated into bioactive peptides using classical solid-phase peptide synthesis. The fluorescence quantum yield and the emission maximum of Alared-labeled peptides vary in a broad range depending on the peptide's environment, making Alared a powerful reporter of biomolecular interactions. Due to its red-shifted absorption and emission spectra, Alared-labeled peptides could be followed in living cells with minimal interference from cellular autofluorescence. Using ratiometric fluorescence microscopy, we were able to track the fate of the Alared-labeled peptide agonists of the apelin G protein-coupled receptor upon receptor activation and internalization. Due to its color-shifting environmentally sensitive emission, Alared allowed for distinguishing the fractions of peptides that are specifically bound to the receptor or unspecifically bound to different cellular membranes.


Assuntos
Aminoácidos , Corantes Fluorescentes , Microscopia de Fluorescência , Peptídeos , Corantes Fluorescentes/química , Peptídeos/química , Aminoácidos/química , Humanos , Microscopia de Fluorescência/métodos , Oxazinas/química , Técnicas de Síntese em Fase Sólida , Espectrometria de Fluorescência
2.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768653

RESUMO

The renin-angiotensin system (RAS) is one of the main regulatory systems of cardiovascular homeostasis. It is mainly composed of angiotensin-converting enzyme (ACE) and angiotensin II receptors AT1 and AT2. ACE and AT1 are targets of choice for the treatment of hypertension, whereas the AT2 receptor is still not exploited due to the lack of knowledge of its physiological properties. Peptide toxins from venoms display multiple biological functions associated with varied chemical and structural properties. If Brazilian viper toxins have been described to inhibit ACE, no animal toxin is known to act on AT1/AT2 receptors. We screened a library of toxins on angiotensin II receptors with a radioligand competition binding assay. Functional characterization of the selected toxin was conducted by measuring second messenger production, G-protein activation and ß-arrestin 2 recruitment using bioluminescence resonance energy transfer (BRET) based biosensors. We identified one original toxin, A-CTX-cMila, which is a 7-residues cyclic peptide from Conus miliaris with no homology sequence with known angiotensin peptides nor identified toxins, displaying a 100-fold selectivity for AT1 over AT2. This toxin shows a competitive antagonism mode of action on AT1, blocking Gαq, Gαi3, GαoA, ß-arrestin 2 pathways and ERK1/2 activation. These results describe the first animal toxin active on angiotensin II receptors.


Assuntos
Hipertensão , Receptor Tipo 1 de Angiotensina , Humanos , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , beta-Arrestina 2/metabolismo , Peptídeos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais
3.
Bioconjug Chem ; 34(1): 162-168, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36534753

RESUMO

Herein, we describe a catalyst-free thia-Diels-Alder cycloaddition for the chemoselective labeling of fully deprotected phosphonodithioester-peptides in solution with fluorophores functionalized with an exocyclic diene. The reaction was optimized on the model tripeptide 1 containing a lysine residue, which enabled its rapid and straightforward labeling with three different fluorophores (fluorescein, lissamine rhodamine B, and squaraine) in very mild conditions (H2O/iPrOH, 37 °C, 1 h). The reaction was then successfully applied to the chemoselective labeling of fully deprotected apelin-13 with squaraine dye. The resulting fluorescent ligand 18 exhibited a high affinity (0.17 ± 0.03 nM) for apelinR. It enabled the development of time-resolved FRET-based competition assays for high-throughput screening and drug discovery. Thanks to its fluorogenic properties, ligand 18 was also successfully involved in the live-cell optical imaging of apelinR in no-wash conditions.


Assuntos
Corantes Fluorescentes , Peptídeos , Apelina , Reação de Cicloadição , Ligantes , Peptídeos/química , Corantes Fluorescentes/química
4.
RSC Med Chem ; 12(8): 1402-1413, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34458742

RESUMO

High blood pressure and consequential cardiovascular diseases are among the top causes of death worldwide. The apelinergic (APJ) system has emerged as a promising target for the treatment of cardiovascular issues, especially prevention of ischemia reperfusion (IR) injury after a heart attack or stroke. However, rapid degradation of the endogenous apelin peptides in vivo limits their use as therapeutic agents. Here, we study the effects of simple homologue substitutions, i.e. incorporation of non-canonical amino acids l-cyclohexylalanine (l-Cha) and l-homoarginine (l-hArg), on the proteolytic stability of pyr-1-apelin-13 and apelin-17 analogues. The modified 13-mers display up to 40 times longer plasma half-life than native apelin-13 and in preliminary in vivo assay show moderate blood pressure-lowering effects. The corresponding apelin-17 analogues show pronounced blood pressure-lowering effects and up to a 340-fold increase in plasma half-life compared to the native apelin-17 isoforms, suggesting their potential use in the design of metabolically stable apelin analogues to prevent IR injury.

5.
Nat Commun ; 12(1): 305, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436646

RESUMO

Apelin and arginine-vasopressin (AVP) are conversely regulated by osmotic stimuli. We therefore hypothesized that activating the apelin receptor (apelin-R) with LIT01-196, a metabolically stable apelin-17 analog, may be beneficial for treating the Syndrome of Inappropriate Antidiuresis, in which AVP hypersecretion leads to hyponatremia. We show that LIT01-196, which behaves as a potent full agonist for the apelin-R, has an in vivo half-life of 156 minutes in the bloodstream after subcutaneous administration in control rats. In collecting ducts, LIT01-196 decreases dDAVP-induced cAMP production and apical cell surface expression of phosphorylated aquaporin 2 via AVP type 2 receptors, leading to an increase in aqueous diuresis. In a rat experimental model of AVP-induced hyponatremia, LIT01-196 subcutaneously administered blocks the antidiuretic effect of AVP and the AVP-induced increase in urinary osmolality and induces a progressive improvement of hyponatremia. Our data suggest that apelin-R activation constitutes an original approach for hyponatremia treatment.


Assuntos
Apelina/análogos & derivados , Apelina/metabolismo , Arginina Vasopressina/efeitos adversos , Diurese , Hiponatremia/patologia , Hiponatremia/fisiopatologia , Sequência de Aminoácidos , Animais , Apelina/administração & dosagem , Apelina/sangue , Receptores de Apelina/metabolismo , Arginina Vasopressina/sangue , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular , Colforsina/farmacologia , AMP Cíclico/biossíntese , Desamino Arginina Vasopressina/farmacologia , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Eletrólitos/sangue , Meia-Vida , Hiponatremia/sangue , Hiponatremia/urina , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/fisiopatologia , Masculino , Camundongos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Tolvaptan/farmacologia
6.
J Med Chem ; 63(20): 12073-12082, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33001648

RESUMO

Apelin is an important contributor to the renin-angiotensin axis, regulating cardiovascular, metabolic, and neurological functions. Apelin-17 has especially potent cardio-physiological effects but is rapidly degraded in human blood (t0.5 ∼ 4 min). Angiotensin-converting enzyme 2 (ACE-2), neprilysin (NEP), and plasma kallikrein (KLKB1) cleave and inactivate it, with the latter cutting within the arginine-arginine site. Here, we show that analogues with an N-terminal polyethylene glycol (PEG) extension as well as peptide bond isosteres resist KLKB1 cleavage but that only the PEG-extended analogues significantly improve physiologically activity. The PEGylated analogues feature comparatively high log D7.4 values and high plasma protein binding, adding to their stability. An alanine scan of apelin-17 reveals that the integrity and conformational flexibility of the KFRR motif are necessary for cardio-physiological activity. An optimized Cbz-PEG6 analogue is presented that is stable in blood (t0.5 ∼ 18 h), has significant blood-pressure lowering effect, and shows fast recovery of heart function in Langendorff assay.


Assuntos
Apelina/química , Polietilenoglicóis/química , Substâncias Protetoras/química , Apelina/análogos & derivados , Humanos , Conformação Molecular , Estereoisomerismo
7.
Biochem J ; 477(21): 4133-4148, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32955085

RESUMO

Aminopeptidase A (APA) is a membrane-bound monozinc aminopeptidase. In the brain, APA generates angiotensin III which exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive animals. The oral administration of RB150 renamed firibastat by WHO, an APA inhibitor prodrug, targeting only the S1 subsite, decreases BP in hypertensive patients from various ethnic origins. To identify new families of potent and selective APA inhibitors, we explored the organization of the APA active site, especially the S2' subsite. By molecular modeling, docking, molecular dynamics simulations and site-directed mutagenesis, we revealed that Arg368 and Arg386, in the S2' subsite of human APA established various types of interactions in major part with the P2' residue but also with the P1' residue of APA inhibitors, required for their nanomolar inhibitory potency. We also demonstrated an important role for Arg368 in APA catalysis, in maintaining the structural integrity of the GAMEN motif, a conserved sequence involved in exopeptidase specificity and optimal positioning of the substrate in monozinc aminopeptidases. This arginine together with the GAMEN motif are key players for the catalytic mechanism of these enzymes.


Assuntos
Glutamil Aminopeptidase/química , Glutamil Aminopeptidase/metabolismo , Sítios de Ligação , Catálise , Dissulfetos/farmacologia , Glutamil Aminopeptidase/antagonistas & inibidores , Glutamil Aminopeptidase/genética , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato , Ácidos Sulfônicos/farmacologia
8.
FASEB J ; 34(6): 7989-8000, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301550

RESUMO

Like apelin (pE13F, K17F), Elabela/Toddler is an endogenous ligand of the apelin receptor playing a key role in cardiovascular development. Elabela/Toddler exists as peptide fragments of 32 (Q32P), 22 (K22P) and 11 (C11P) amino acids. In this study, we investigated the possible structural and functional similarities between these endogenous ligands. We performed in vitro pharmacological characterization and biased signaling analyses for apelin and Elabela/Toddler fragments in CHO cells, by assessing binding affinities, the inhibition of cyclic adenosine monophosphate (cAMP) production and the triggering of ß-arrestin 2 recruitment. We also performed Alanine scanning for Elabela/Toddler and structure-function studies based on site-directed mutagenesis of the rat and human apelin receptor, to compare the modes of binding of the different endogenous ligands. Alanine scanning of K22P showed that neither of its cysteine residues were involved in binding or in peptide activity and that its C-terminus carried the key pharmacophore for receptor binding and activation. We showed that Asp282 and Asp284 of rat and human apelin receptor, respectively, were not involved in Elabela/Toddler activity, whereas they are key residues for apelin binding and activity. We found that the structural features of Elabela/Toddler and apelin were different, resulting in different modes of binding of these endogenous ligands to the apelin receptor. These differences should be taken into account in the future development metabolically stable analogs of Elabela/Toddler and apelin as potential therapeutic tools for the treatment of cardiovascular diseases and water retention/hyponatremic disorders.


Assuntos
Receptores de Apelina/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Células CHO , Doenças Cardiovasculares/metabolismo , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Cisteína/metabolismo , Humanos , Hiponatremia/metabolismo , Fragmentos de Peptídeos/metabolismo , Ratos , Transdução de Sinais/fisiologia
9.
Ann N Y Acad Sci ; 1455(1): 12-33, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31236974

RESUMO

The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.


Assuntos
Apelina/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/metabolismo , Animais , Humanos , Proteólise , Transdução de Sinais
10.
Eur J Med Chem ; 166: 119-124, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690406

RESUMO

Apelins are human peptide hormones with various physiological activities, including the moderation of cardiovascular, renal, metabolic and neurological function. Their potency is dependent on and limited by proteolytic degradation in the circulatory system. Here we identify human plasma kallikrein (KLKB1) as a protease that cleaves the first three N-terminal amino acids (KFR) of apelin-17. The cleavage kinetics are similar to neprilysin (NEP), which cleaves within the critical 'RPRL'-motif thereby inactivating apelin. The resulting C-terminal 14-mer after KLKB1 cleavage has much lower biological activity, and the presence of its N-terminal basic arginine seems to negate the blood pressure lowering effect. Based on C-terminally engineered apelin analogs (A2), resistant to angiotensin converting enzyme 2 (ACE2), attachment of an N-terminal C16 fatty acid chain (PALMitoylation) or polyethylene glycol chain (PEGylation) minimizes KLKB1 cleavage of the 17-mers, thereby extending plasma half-life while fully retaining biological activity. The N-terminally PEGylated apelin-17(A2) is a highly protease resistant analog, with excellent apelin receptor activation and pronounced blood pressure lowering effect.


Assuntos
Apelina/química , Apelina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Ácidos Graxos/química , Calicreína Plasmática/metabolismo , Polietilenoglicóis/química , Proteólise , Apelina/farmacologia , Humanos , Estabilidade Proteica
11.
PLoS One ; 12(9): e0184237, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28877217

RESUMO

Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-ß-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis.


Assuntos
Aminoácidos/metabolismo , Glutamil Aminopeptidase/metabolismo , Animais , Arginina , Células CHO , Cálcio , Domínio Catalítico , Clonagem Molecular , Cricetulus , Imunofluorescência , Glutamil Aminopeptidase/antagonistas & inibidores , Glutamil Aminopeptidase/genética , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Ácidos Sulfônicos/farmacologia
12.
J Med Chem ; 60(14): 6408-6427, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28685579

RESUMO

Apelin is an important mammalian peptide hormone with a range of physiological roles, especially in the cardiovascular system. The apelinergic system is a promising target for treatment of disease, but this remains to be realized due to rapid proteolysis of apelin-derived peptides by proteases, including neprilysin (NEP). The synthetic analogues modified within the NEP degradation site ("RPRL" motif) showed improved in vitro proteolytic stability while maintaining receptor-binding affinities, with three candidate peptides retaining full cardiovascular activities for potential therapeutic application. Many such analogues proved physiologically inactive even with relatively conservative modifications, highlighting the importance of this region for full agonist activity of this peptide hormone.


Assuntos
Fármacos Cardiovasculares/síntese química , Peptídeos e Proteínas de Sinalização Intercelular/síntese química , Neprilisina/sangue , Animais , Receptores de Apelina , Pressão Sanguínea/efeitos dos fármacos , Células CHO , Fármacos Cardiovasculares/sangue , Fármacos Cardiovasculares/farmacologia , Cricetulus , Frequência Cardíaca/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Isoformas de Proteínas/sangue , Isoformas de Proteínas/síntese química , Isoformas de Proteínas/farmacologia , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
13.
Artigo em Inglês | MEDLINE | ID: mdl-28620355

RESUMO

Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling body fluid homeostasis and cardiovascular functions. In animal models, experimental data demonstrate that intracerebroventricular injection of apelin into lactating rats inhibits the phasic electrical activity of arginine vasopressin (AVP) neurons, reduces plasma AVP levels, and increases aqueous diuresis. In the kidney, apelin increases diuresis by increasing the renal microcirculation and by counteracting the antidiuretic effect of AVP at the tubular level. Moreover, after water deprivation or salt loading, in humans and in rodents, AVP and apelin are conversely regulated to facilitate systemic AVP release and to avoid additional water loss from the kidney. Furthermore, apelin and vasopressin secretion are significantly altered in various water metabolism disorders including hyponatremia and polyuria-polydipsia syndrome. Since the in vivo half-life of apelin is in the minute range, metabolically stable apelin analogs were developed. The efficacy of these lead compounds for decreasing AVP release and increasing both renal blood flow and diuresis, make them promising candidates for the treatment of water retention and/or hyponatremic disorders.

14.
ChemMedChem ; 12(12): 925-931, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28374567

RESUMO

Analogues of apelin-13 carrying diverse spacers and an ad hoc DY647-derived fluorophore were designed and synthesized by chemoselective acylation of α-hydrazinopeptides. The resulting probes retain very high affinity and efficacy for both the wild-type and SNAP-tagged apelin receptor (ApelinR). They give a time-resolved FRET (TR-FRET) signal with rare-earth lanthanides used as donor fluorophores grafted onto the SNAP-tagged receptor. This specific signal allowed the validation of a binding assay with a high signal-to-noise ratio. In such an assay, the most potent sub-nanomolar fluorescent probe was found to be competitively displaced by the endogenous apelin peptides with binding constants similar to those obtained in a classical radioligand assay. We have thus validated the first TR-FRET cell-based binding assay for ApelinR with potential high-throughput screening applications.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Elementos da Série dos Lantanídeos/farmacologia , Compostos Organometálicos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores de Apelina , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Elementos da Série dos Lantanídeos/química , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Relação Estrutura-Atividade , Fatores de Tempo
15.
FASEB J ; 31(2): 687-700, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27815337

RESUMO

Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling cardiovascular functions and water balance. Because the in vivo apelin half-life is in the minute range, we aimed to identify metabolically stable apelin-17 (K17F) analogs. We generated P92 by classic chemical substitutions and LIT01-196 by original addition of a fluorocarbon chain to the N terminus of K17F. Both analogs were much more stable in plasma (half-life >24 h for LIT01-196) than K17F (4.6 min). Analogs displayed a subnanomolar affinity for the apelin receptor and behaved as full agonists with regard to cAMP production, ERK phosphorylation, and apelin receptor internalization. Ex vivo, these compounds induced vasorelaxation of rat aortas and glomerular arterioles, respectively, precontracted with norepinephrine and angiotensin II, and increased cardiac contractility. In vivo, after intracerebroventricular administration in water-deprived mice, P92 and LIT01-196 were 6 and 160 times, respectively, more efficient at inhibiting systemic vasopressin release than K17F. Administered intravenously (nmol/kg range) in normotensive rats, these analogs potently increased urine output and induced a profound and sustained decrease in arterial blood pressure. In summary, these new compounds, which favor diuresis and improve cardiac contractility while reducing vascular resistances, represent promising candidates for the treatment of heart failure and water retention/hyponatremic disorders.-Gerbier, R., Alvear-Perez, R., Margathe, J.-F., Flahault, A., Couvineau, P., Gao, J., De Mota, N., Dabire, H., Li, B., Ceraudo, E., Hus-Citharel, A., Esteoulle, L., Bisoo, C., Hibert, M., Berdeaux, A., Iturrioz, X., Bonnet, D., Llorens-Cortes, C. Development of original metabolically stable apelin-17 analogs with diuretic and cardiovascular effects.


Assuntos
Fármacos Cardiovasculares/farmacologia , Diuréticos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Receptores de Apelina , Células CHO , Fármacos Cardiovasculares/química , Cricetinae , Cricetulus , Diuréticos/química , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Vasoconstrição
17.
Nat Commun ; 7: 11942, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27336951

RESUMO

Receptor tyrosine kinases (RTKs) and integrins cooperate to stimulate cell migration and tumour metastasis. Here we report that an integrin influences signalling of an RTK, c-Met, from inside the cell, to promote anchorage-independent cell survival. Thus, c-Met and ß1-integrin co-internalize and become progressively recruited on LC3B-positive 'autophagy-related endomembranes' (ARE). In cells growing in suspension, ß1-integrin promotes sustained c-Met-dependent ERK1/2 phosphorylation on ARE. This signalling is dependent on ATG5 and Beclin1 but not on ATG13, suggesting ARE belong to a non-canonical autophagy pathway. This ß1-integrin-dependent c-Met-sustained signalling on ARE supports anchorage-independent cell survival and growth, tumorigenesis, invasion and lung colonization in vivo. RTK-integrin cooperation has been assumed to occur at the plasma membrane requiring integrin 'inside-out' or 'outside-in' signalling. Our results report a novel mode of integrin-RTK cooperation, which we term 'inside-in signalling'. Targeting integrin signalling in addition to adhesion may have relevance for cancer therapy.


Assuntos
Integrina beta1/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Autofagia , Carcinogênese , Adesão Celular , Linhagem Celular , Movimento Celular , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Integrina beta1/genética , Camundongos , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais
18.
J Virol ; 90(3): 1647-56, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608314

RESUMO

UNLABELLED: We have previously reported the construction of a murine leukemia virus-based replication-competent gammaretrovirus (SL3-AP) capable of utilizing the human G protein-coupled receptor APJ (hAPJ) as its entry receptor and its natural receptor, the murine Xpr1 receptor, with equal affinities. The apelin receptor has previously been shown to function as a coreceptor for HIV-1, and thus, adaptation of the viral vector to this receptor is of significant interest. Here, we report the molecular evolution of the SL3-AP envelope protein when the virus is cultured in cells harboring either the Xpr1 or the hAPJ receptor. Interestingly, the dual receptor affinity is maintained even after 10 passages in these cells. At the same time, the chimeric viral envelope protein evolves in a distinct pattern in the apelin cassette when passaged on D17 cells expressing hAPJ in three separate molecular evolution studies. This pattern reflects selection for reduced ligand-receptor interaction and is compatible with a model in which SL3-AP has evolved not to activate hAPJ receptor internalization. IMPORTANCE: Few successful examples of engineered retargeting of a retroviral vector exist. The engineered SL3-AP envelope is capable of utilizing either the murine Xpr1 or the human APJ receptor for entry. In addition, SL3-AP is the first example of an engineered retrovirus retaining its dual tropism after several rounds of passaging on cells expressing only one of its receptors. We demonstrate that the virus evolves toward reduced ligand-receptor affinity, which sheds new light on virus adaptation. We provide indirect evidence that such reduced affinity leads to reduced receptor internalization and propose a novel model in which too rapid receptor internalization may decrease virus entry.


Assuntos
Evolução Molecular Direcionada , Gammaretrovirus/fisiologia , Instabilidade Genômica , Proteínas do Envelope Viral/metabolismo , Tropismo Viral , Internalização do Vírus , Animais , Receptores de Apelina , Linhagem Celular , Gammaretrovirus/genética , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética , Receptor do Retrovírus Politrópico e Xenotrópico
19.
Chemistry ; 22(4): 1399-405, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26682530

RESUMO

Herein, we develop a convenient method to facilitate the solution-phase fluorescent labelling of peptides based on the chemoselective acylation of α-hydrazinopeptides. This approach combines the advantages of using commercially available amine-reactive dyes and very mild conditions, which are fully compatible with the chemical sensitivity of the dyes. The usefulness of this approach was demonstrated by the labelling of apelin-13 peptide. Various fluorescent probes were readily synthesized, enabling the rapid optimization of their affinities for the apelin receptor. Thus, the first far-red fluorescent ligand with sub-nanomolar affinity for the apelin receptor was characterized and shown to track the receptor efficiently in living cells by fluorescence confocal microscopy.


Assuntos
Corantes Fluorescentes/química , Hidrazinas/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos/síntese química , Receptores Acoplados a Proteínas G/química , Acilação , Hidrazinas/síntese química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Peptídeos/química , Receptores Acoplados a Proteínas G/metabolismo
20.
FASEB J ; 29(1): 314-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25359495

RESUMO

Apelin is the endogenous ligand of the orphan 7-transmembrane domain GPCR APJ, now named the apelin receptor (ApelinR). Apelin plays a prominent role in body fluid and cardiovascular homeostasis. To better understand the structural organization of the ApelinR, we built 3 homology 3-dimensional (3D) models of the human ApelinR using the validated cholecystokinin receptor-1 3D model or the X-ray structures of the ß2-adrenergic and CXCR4 receptors as templates. Docking of the pyroglutamyl form of apelin 13 (pE13F) into these models revealed the conservation at the bottom of the binding site of a hydrophobic cavity in which the C-terminal Phe of pE13F was embedded. In contrast, at the top of the binding site, depending on the model, different interactions were visualized between acidic residues of the ApelinR and the basic residues of pE13F. Using site-directed mutagenesis, we showed that Asp 92, Glu 172, and Asp 282 of rat ApelinR are key residues in apelin binding by interacting with Lys 8, Arg 2, and Arg 4 of pE13F, respectively. These residues are only seen in the CXCR4-based ApelinR 3D model, further validating this model. These findings bring new insights into the structural organization of the ApelinR and the mode of apelin binding.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Apelina , Receptores de Apelina , Sítios de Ligação/genética , Sequência Conservada , AMP Cíclico/biossíntese , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , Conformação Proteica , Ratos , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...