Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 108: 19-31, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28254546

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic and prevalent respiratory disease caused primarily by long term inhalation of cigarette smoke. A major hallmark of COPD is elevated apoptosis of structural lung cells including fibroblasts. The NF-κB member RelB may suppress apoptosis in response to cigarette smoke, but its role in lung cell survival is not known. RelB may act as a pro-survival factor by controlling the expression of superoxide dismutase 2 (SOD2). SOD2 is also regulated by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that suppresses cigarette smoke-induced apoptosis. As the AhR is also a binding partner for RelB, we speculate that RelB suppresses cigarette smoke-induced apoptosis by regulating the AhR. Using an in vitro model of cigarette smoke exposure (cigarette smoke extract [CSE]), we found that CSE down-regulated RelB expression in mouse lung fibroblasts, which was associated with elevated levels of cleaved PARP. Genetic ablation of RelB elevated CSE-induced apoptosis, including chromatin condensation, and reduced mitochondrial function. There was also more reactive oxygen species production in RelB-/- cells exposed to CSE. While there was no alteration in Nrf2 expression or localization between RelB-/- and wild type cells in response to CSE, RelB-/- cells displayed significantly decreased AhR mRNA and protein expression, concomitant with loss of AhR target gene expression (Cyp1a1, Cyp1b1, Nqo1). Finally, we found that RelB binds to the Ahr gene at 3 sites to potentially increase its expression via transcriptional induction. These data support that RelB suppresses cigarette smoke-induced apoptosis, potentially by increasing the AhR. Together, these two proteins may comprise an important cell survival signaling pathway that reduces apoptosis upon cigarette smoke exposure.


Assuntos
Fibroblastos/fisiologia , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Transcrição RelB/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Apoptose , Células Cultivadas , Fumar Cigarros/efeitos adversos , Regulação para Baixo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Doença Pulmonar Obstrutiva Crônica/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Fator de Transcrição RelB/genética , Transcrição Gênica
2.
Int J Mol Sci ; 18(2)2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28125025

RESUMO

Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Suscetibilidade a Doenças , Material Particulado/efeitos adversos , Animais , Antioxidantes/metabolismo , Biomarcadores , Morte Celular , Epigênese Genética , Predisposição Genética para Doença , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Doenças Respiratórias/etiologia , Doenças Respiratórias/metabolismo , Transdução de Sinais
3.
Sci Rep ; 7: 40539, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079158

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for its toxic responses to man-made pollutants such as dioxin. More recently, the AhR has emerged as a suppressor of inflammation, oxidative stress and apoptosis from cigarette smoke by mechanisms that may involve the regulation of microRNA. However, little is known about the AhR regulation of miRNA expression in the lung in response to inhaled toxicants. Therefore, we exposed Ahr-/- and Ahr+/- mice to cigarette smoke for 4 weeks and evaluated lung miRNA expression by PCR array. There was a dramatic regulation of lung miRNA by the AhR in the absence of exogenous ligand. In response to cigarette smoke, there were more up-regulated miRNA in Ahr-/- mice compared to Ahr+/- mice, including the cancer-associated miRNA miR-96. There was no significant change in the expression of the AhR regulated proteins HuR and cyclooxygenase-2 (COX-2). There were significant increases in the anti-oxidant gene sulfiredoxin 1 (Srxn1) and FOXO3a- predicted targets of miR-96. Collectively, these data support a prominent role for the AhR in regulating lung miRNA expression. Further studies to elucidate a role for these miRNA may further uncover novel biological function for the AhR in respiratory health and disease.


Assuntos
Regulação da Expressão Gênica , Pulmão/metabolismo , MicroRNAs/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fumar/efeitos adversos , Fumar/genética , Animais , Quimiotaxia/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Deleção de Genes , Cinética , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência
4.
J Vis Exp ; (79): e50544, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24121300

RESUMO

In vivo experimental models of hepatocellular carcinoma (HCC) that recapitulate the human disease provide a valuable platform for research into disease pathophysiology and for the preclinical evaluation of novel therapies. We present a variety of methods to generate subcutaneous or orthotopic human HCC xenografts in immunodeficient mice that could be utilized in a variety of research applications. With a focus on the use of primary tumor tissue from patients undergoing surgical resection as a starting point, we describe the preparation of cell suspensions or tumor fragments for xenografting. We describe specific techniques to xenograft these tissues i) subcutaneously; or ii) intrahepatically, either by direct implantation of tumor cells or fragments into the liver, or indirectly by injection of cells into the mouse spleen. We also describe the use of partial resection of the native mouse liver at the time of xenografting as a strategy to induce a state of active liver regeneration in the recipient mouse that may facilitate the intrahepatic engraftment of primary human tumor cells. The expected results of these techniques are illustrated. The protocols described have been validated using primary human HCC samples and xenografts, which typically perform less robustly than the well-established human HCC cell lines that are widely used and frequently cited in the literature. In comparison with cell lines, we discuss factors which may contribute to the relatively low chance of primary HCC engraftment in xenotransplantation models and comment on technical issues that may influence the kinetics of xenograft growth. We also suggest methods that should be applied to ensure that xenografts obtained accurately resemble parent HCC tissues.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transplante de Neoplasias/métodos , Transplante Heterólogo/métodos , Animais , Carcinoma Hepatocelular/imunologia , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...