Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Molecules ; 24(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759856

RESUMO

The paper analyses influences of the temperature and hydrophilic groups on micellar properties of ionic surfactants with 12-carbonic hydrophobic chains. The aim is to assess the impact of hydrophilic groups and temperature on thermodynamic parameters and micellization. This knowledge is indispensable for the formulation of new dosage forms. The method uses conductometric measurements. The following hydrophilic groups are analyzed: trimethylammonium bromide, trimethylammonium chloride, ethyldimethylammonium bromide, didodecyldimethylammonium bromide, pyridinium chloride, benzyldimethyl-ammonium chloride, methylephedrinium bromide, cis and trans-[(2-benzyloxy)-cyclohexyl-methyl]-N, N-dimethylammonium bromide, sodium sulphate and lithium sulphate. Except for a few cases, there is a good agreement between values of critical micellar concentrations (CMC) and critical vesicle concentration (CVC) obtained here and those which were obtained by other authors and/or by other physicochemical methods. Values of the CMC are compared with respect to the molar masses of hydrophilic groups. It was found that CMC values increased non-linearly with increasing system temperature. The degrees of counterion binding and thermodynamic parameters, like the standard molar Gibbs energy, enthalpy and entropy of micellization are determined and discussed in detail. The results obtained will be incorporated into in silico processes of modeling and design of optimal dosage forms, a current interdisciplinary research focus of the team.


Assuntos
Íons/química , Tensoativos/química , Brometos/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Compostos de Lítio/química , Micelas , Modelos Químicos , Compostos de Amônio Quaternário/química , Sulfatos/química , Temperatura , Termodinâmica
2.
Molecules ; 22(10)2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073737

RESUMO

It is known that cationic surfactants have an antimicrobial effect and act as enhancers. This paper studies three cationic surfactants from the group of alkyldimethylbenzylammonium chlorides (dodecyl-, tetradecyl-, and hexadecyl). Interest is focused on the association of the surfactants with respect to temperature, partition balances and their influence on drug release, rheological properties, and the pH of hydrogels. The critical micelle concentrations (CMC) of the surfactants were estimated from dependencies of conductivity, density, spectrofluorimetry, and UV-VIS spectrophotometry on molarity in the temperature range of 25-50 °C. It was found that the temperature dependence of a CMC is U-shaped, with its minimum at 30 °C, and the CMC value decreases as the length of the chain increases. The pseudo-phase separation model was used for the calculation of various thermodynamic parameters, such as the Gibbs free energies (spontaneous process), enthalpies (exothermic process), and entropies of the micelles' formation, CMCs, and the degree of counterion binding. All thermodynamic parameters, as functions of the temperature, were estimated. It was found that partition coefficients increase as the length of the alkyl chain and the pH = (5.0-7.0) increase. The influences of surfactants, below and above the CMC, on drug (chlorhexidine dihydrochloride) release from hydrogels, rheological properties, and pH at 30 °C were studied. Also, the amounts of the released drug increase as the alkyl chains of the surfactants prolongate. The amounts of the released drug with the surfactant below the CMC are greater than that above the CMC. All hydrogels (regardless of the length of the alkyl chain) exhibit a non-Newtonian pseudo-plastic flow. The results obtained will be used in the formulation of the drug and surfactants into dosage forms.


Assuntos
Compostos de Benzalcônio/química , Tensoativos/química , Clorexidina/química , Sistemas de Liberação de Medicamentos , Hidrogéis , Concentração de Íons de Hidrogênio , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...