Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurooncol ; 153(3): 383-391, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34028660

RESUMO

INTRODUCTION: Effective glioblastoma (GBM) treatment is limited by high invasiveness and heterogeneity. Current therapies target proliferating Glioma Stem Cell (GSC) subpopulations while sparing invading GSCs, which eventually engender tumor recurrence after treatment. Surface receptor CD97/ADRGE5 is associated with invasion and metastasis regulation in non-CNS cancers. Although CD97 expression level positively correlates with poor GBM patient prognosis, its role in this tumor is unclear. METHODS: Here, we examined CD97 function in primary patient-derived GSCs (pdGSCs) obtained from five GBM tumors, belonging to three major genetic subtypes. We compared endogenous CD97 levels in pdGSCs to the corresponding patient MRI's radiographic invasion pattern aggressiveness. We manipulated CD97 levels in these pdGSCs by knockdown and overexpression and analyzed: (i) stem and subtype marker expression, (ii) in vitro invasive properties, and (iii) cell proliferation. RESULTS: Endogenous CD97 levels in pdGSCs positively correlated with radiographic invasion pattern aggressiveness on patient MRIs, and in vitro invasion rate. CD97 knockdown decreased pdGSC invasion rates in vitro, most markedly in mesenchymal subtype pdGSCs, as well as classical subtype pdGSCs. Invasion rates in vitro increased after CD97 overexpression predominately in proneural subtype pdGSCs. In the pdGSC line with the lowest endogenous CD97 level, CD97 overexpression increased the proliferation rate almost threefold. CONCLUSIONS: For the first time in pdGSCs, we have shown that CD97 knockdown decreases and overexpression increases invasion rate in vitro. The effect of CD97 on invasion is pdGSC subtype-dependent. Future in vivo and mechanistic studies are needed for validation. Pharmacologic CD97 inhibitors should be identified, as they may potentially therapeutically diminish GBM invasion.


Assuntos
Glioma , Células-Tronco Neoplásicas , Antígenos CD , Regulação Neoplásica da Expressão Gênica , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Recidiva Local de Neoplasia , Receptores Acoplados a Proteínas G
2.
AJNR Am J Neuroradiol ; 36(11): 1998-2006, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26113069

RESUMO

Minimally invasive stereotactic tumor ablation is a viable option for the treatment of benign and malignant intracranial lesions. Although surgical excision constitutes first-line therapy for various brain pathologies, it can cause irreversible neurologic deficits. Additionally, many patients who may benefit from surgery do not qualify as surgical candidates due to multiple comorbidities. Recent advancements in laser interstitial thermal therapy, namely the ability to monitor ablation in real-time under MR imaging, have improved the safety and efficacy of the procedure. MRI-guided laser interstitial thermal therapy is currently used as a minimally invasive treatment for brain metastases, radiation necrosis, glioma, and epilepsy. This article will discuss the principles, suggested indications, complications, and imaging characteristics of MRI-guided laser interstitial thermal therapy as they pertain to the treatment of brain pathology.


Assuntos
Neoplasias Encefálicas/cirurgia , Epilepsia/cirurgia , Terapia a Laser/métodos , Imageamento por Ressonância Magnética/métodos , Cirurgia Assistida por Computador/métodos , Glioma/cirurgia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...