Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 181(2): 662-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22683310

RESUMO

Malignant astrocytomas are highly invasive brain tumors. The Rho family of cytoskeletal GTPases are key regulators of astrocytoma migration and invasion; expression of the guanine nucleotide exchange factor ECT2 is elevated in primary astrocytomas and predicts both survival and malignancy. Mice bearing orthotopically implanted astrocytoma cells with diminished ECT2 levels following ECT2 knockdown exhibit longer survival. Although ECT2 is normally expressed in the nucleus, we show that ECT2 is aberrantly localized to the cytoplasm in both astrocytoma cell lines and primary human astrocytomas, and colocalizes with RAC1 and CDC42 at the leading edge of migrating astrocytoma cells. Inhibition of ECT2 expression by RNA interference resulted in decreased RAC1 and CDC42 activity, but no change in RHO activity, suggesting that ECT2 is capable of activating these pro-migratory Rho family members. ECT2 overexpression in astrocytoma cells resulted in a transition to an amoeboid phenotype that was abolished with the ROCK inhibitor, Y-27632. Cytoplasmic fractionation of astrocytoma cells followed by ECT2 immunoprecipitation and mass spectrometry were used to identify protein-binding partners that modulate the activity of ECT2 toward RAC1 and RHO/ROCK. We identified RASAL2 as an ECT2-interacting protein that regulates RHO activity in astrocytoma cells. RASAL2 knockdown leads to a conversion to an amoeboid phenotype. Our studies reveal that ECT2 has a novel role in mesenchymal-amoeboid transition in human astrocytoma cells.


Assuntos
Astrocitoma/metabolismo , Astrocitoma/patologia , Proteínas de Transporte/metabolismo , Mesoderma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Adolescente , Adulto , Idoso , Anaplasia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Movimento Celular , Criança , Pré-Escolar , Citoplasma/metabolismo , Feminino , Proteínas Ativadoras de GTPase , Humanos , Masculino , Mesoderma/patologia , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Gradação de Tumores , Transporte Proteico , Pseudópodes/metabolismo , Adulto Jovem , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Genes Cancer ; 2(9): 859-69, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22593798

RESUMO

The cofilin pathway plays a central role in the regulation of actin polymerization and the formation of cell membrane protrusions that are essential for cell migration. Overexpression of cofilin has been linked to the aggressiveness of a variety of different cancers. In these cancers, the phosphorylation of cofilin at Ser3 is a key regulatory mechanism modulating cofilin activity. The activation status of cofilin has been directly linked to tumor invasion. Accordingly, in this study, we examined the expression of cofilin and its activation status in astrocytoma cell lines and astrocytic tumors. We show that cofilin expression was increased and correlated with increasing grade malignant astrocytoma. In addition, both cofilin and LIMK had elevated expression in astrocytoma cell lines. Knockdown of cofilin by siRNA altered astrocytoma cell morphology and inhibited astrocytoma migration and invasion. Conversely, overexpression of a cofilin phosphorylation mutant in an in vivo intracranial xenograft model resulted in a more highly invasive phenotype than those xenographs expressing wild-type cofilin. Animals harboring astrocytomas stably expressing the cofilin phosphorylation mutant (cofilin-S3A) demonstrated marked local invasiveness and spread across the corpus callosum to the contralateral hemisphere in all animals. Taken together, these data indicate that the cofilin activity pathway may represent a novel therapeutic target to diminish the invasion of these highly malignant tumors.

3.
Mol Cell ; 38(4): 539-50, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20513429

RESUMO

The p14/p19(ARF) (ARF) product of the CDKN2A gene displays tumor suppressor activity both in the presence and absence of p53/TP53. In p53-negative cells, ARF arrests cell proliferation, at least in part, by suppressing ribosomal RNA synthesis. We show that ARF does this by controlling the subnuclear localization of the RNA polymerase I transcription termination factor, TTF-I. TTF-I shuttles between nucleoplasm and nucleolus with the aid of the chaperone NPM/B23 and a nucleolar localization sequence within its N-terminal regulatory domain. ARF inhibits nucleolar import of TTF-I by binding to this nucleolar localization sequence, causing the accumulation of TTF-I in the nucleoplasm. Depletion of TTF-I recapitulates the effects of ARF on ribosomal RNA synthesis and is rescued by the introduction of a TTF-I transgene. Thus, our data delineate the pathway by which ARF regulates ribosomal RNA synthesis and provide a compelling explanation for the role of NPM.


Assuntos
Proteínas de Ligação a DNA/metabolismo , RNA Polimerase I/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fatores de Transcrição
4.
Cell Cycle ; 7(12): 1836-50, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18583933

RESUMO

The p14(ARF) (ARF) tumour suppressor plays an important role in the cellular response to oncogene activation. In this report, we demonstrate an interaction between ARF and DAXX, a highly conserved protein with identified roles in the regulation of gene expression. HDM2 was shown to interact with each of ARF and DAXX upon upregulation of expression as well as at lower expression levels following transfection of ARF and DAXX. Through immunofluorescence analysis, we observed that endogenous ARF and DAXX colocalize both to nucleoli and to nuclear bodies in cell lines that co-express both proteins. Similar results were obtained upon co-transfection of ARF and DAXX. Co-expression of ARF and DAXX was further found to inhibit ARF-mediated HDM2 sumoylation and to induce sumoylation and ubiquitination of DAXX itself, implicating DAXX as a substrate of ARF-mediated post-translational events. We also observed induction of p53 sumoylation in the presence of ARF and DAXX, an effect that was inhibited by upregulation of HDM2 expression. In summary, we have identified DAXX as a novel ARF binding partner and substrate of ARF-mediated sumoylation and suggest that DAXX acts as a modifier of both p53-dependent and p53-independent ARF function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Sítios de Ligação , Linhagem Celular , Nucléolo Celular/química , Estruturas do Núcleo Celular/química , Proteínas Correpressoras , Humanos , Chaperonas Moleculares , Proteínas Nucleares/análise , Proteínas Nucleares/química , Proteínas Repressoras/metabolismo , Proteína SUMO-1/metabolismo , Proteína Supressora de Tumor p14ARF/análise , Proteína Supressora de Tumor p14ARF/química , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
5.
Glia ; 55(3): 282-93, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17091489

RESUMO

Organization of the central nervous system during embryonic development is an intricate process involving a host of molecular players. The Drosophila segmentation genes, sloppy paired (slp) 1/2 have been shown to be necessary for development of a neuronal precursor cell subtype, the NB4-2 cells. Here, we show that slp1/2 also have roles in regulating glial cell fates. Using slp1/2 loss-of-function mutants, we show an increase in glial cell markers, glial cells missing (gcm) and reversed polarity. In contrast, misexpression of either slp1 or slp2 causes downregulation of glial cell-specific genes and alters the fate of glial and neuronal cells. Furthermore, we demonstrate that Slp1 and its mammalian ortholog, Foxg1, inhibit Gcm transcriptional activity as well as bind Gcm. Taken together, these data show that Slp1/Foxg1 regulate glial cell fates by inhibiting Gcm function.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Neuroglia/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Células COS , Diferenciação Celular/genética , Linhagem da Célula/genética , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/antagonistas & inibidores
6.
Neurosurgery ; 54(3): 692-9; discussion 699-700, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15028146

RESUMO

PROLIFERATIVE CUES TRIGGER a complex series of molecular signaling events in cells. Early in the cell cycle, cells are faced with an important decision that affects their fate. They either initiate a round of replication or they withdraw from cell division. Passage through the restriction point, or "point of no return," marks cellular commitment to a new round of division. Genetic mutations that predispose individuals to tumorigenesis often affect pathways that influence cellular proliferation. Many of the mutated genes give rise to molecules that are no longer able to appropriately regulate the mammalian cell cycle; the end result is neoplasia. In this review, the critical elements that permit cell cycle progression and the positive and negative regulators that affect the process are reviewed.


Assuntos
Neoplasias Encefálicas/genética , Ciclo Celular/genética , Divisão Celular/genética , Transformação Celular Neoplásica/genética , Genes Reguladores/genética , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Análise Mutacional de DNA , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes Supressores de Tumor/fisiologia , Humanos , Proteína do Retinoblastoma/genética , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...