Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119478, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524818

RESUMO

The excessive use of pesticides disturbs the natural balance in the environment, creates resistance to pesticides and leads to water and food contamination. Therefore, the implementation of fast, robust and cost effective techniques for the monitoring of pesticides is required. In this work surface-enhanced Raman spectroscopy (SERS) was used for the detection of four common pesticides: atrazine, simazin, irgarol, and diuron. SERS is nowadays considered an effective technique for detection of various analytes in low concentration. Sensitivity of the SERS method depends on the type of substrate that can be either a colloidal solution of metal nanoparticles (NPs) or a metal surface with a suitable nanostructured topology. Here, we have investigated the application of silver nanospheres and silver nanoprisms as SERS substrates in pesticides detection. Colloids with spherical NPs were produced by chemical reduction while Ag nanoprisms were prepared by reducing silver nitrate with borohydride (with citrate as a stabilizing agent) and stirring under a UV lamp for 4 and 10 h. The SERS results have shown that, in the presence of synthesized NPs, it was possible to detect millimolar concentrations of aforementioned pesticides with the exception of diuron.

2.
Nanotechnology ; 26(6): 065602, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25605224

RESUMO

We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

3.
Nanotechnology ; 20(8): 085612, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19417460

RESUMO

We studied the structural properties of (Ge+SiO2)/SiO2 multilayer films, especially the influence of the deposition temperature and the parameters of subsequent annealing on the formation and spatial correlation of Ge quantum dots in an amorphous silica matrix. We showed that in-layer and inter-layer spatial correlations of the formed Ge quantum dots strongly depend on the deposition temperature. For suitable chosen deposition parameters, highly correlated dot positions in all three dimensions can be obtained. It is demonstrated that the degree of the spatial correlation of quantum dots influences the size distribution width, which further affects the macroscopic properties of the quantum dot arrays.


Assuntos
Cristalização/métodos , Germânio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Pontos Quânticos , Dióxido de Silício/química , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura
6.
Appl Opt ; 31(30): 6371-5, 1992 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20733850

RESUMO

In a microscope of a micro-Raman spectrometer a cylindrical lens is introduced to form a line-focus microprobe (LFMP). The dimensions of the LFMP are 0.66 x 167 microm. The lateral spatial resolution of Raman scattering with the LFMP is equal to the spatial resolution of the point-focus microprobe (PFMP). It is shown that the LFMP system enables measurements with a laser power density that is 320 times lower than the PFMP. For the same laser power density in both types of illumination, the LFMP Raman spectra give approximately radical320 or asymptotically equal to 18 times better signal-to-noise ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...