Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37765384

RESUMO

Meadow restoration and creation projects have faced a lack of local seed diversity due to the limited availability of seed sources. Non-thermal plasma technologies are being developed for agriculture and do not cause damage to heat-sensitive biological systems. This technology has shown the potential to improve agronomic seed quality by enhancing germination and promoting plant growth. However, there is almost no information about the effect of non-thermal plasma pretreatment on the seedlings' emergence of wild plant species. Therefore, this study aimed to evaluate the effect of non-thermal plasma on the emergence of 17 plant seeds originating from local meadows in Lithuania and compare it with the cold stratification pretreatment. The results obtained indicate that there were differences in emergence parameters among the species. However, NTP did not show statistically significant differences from the control. Non-thermal plasma improved the kinetic parameters of emergence for a few specific species' seeds, such as Anthyllis vulneraria and Prunella grandiflora, while the cold stratification pretreatment enhanced emergence for a broader range of plants. Significant differences were observed between non-thermal plasma and stratification pretreatment, as well as between the control and stratification groups. Both methods also had a negative impact.

2.
Antioxidants (Basel) ; 11(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009278

RESUMO

In order to ensure sufficient food resources for a constantly growing human population, new technologies (e.g., cold plasma technologies) are being developed for increasing the germination and seedling growth without negative effects on the environment. Pinaceae species are considered a natural source of antioxidant compounds and are valued for their pharmaceutical and nutraceutical properties. In this study, the seeds of seven different Norway spruce half-sib families were processed for one or two minutes with cold plasma (CP) using dielectric barrier discharge (DBD) plasma equipment. At the end of the second vegetation season, the total flavonoid content (TFC), DPPH (2,2- diphenyl-1-picryl-hydrazyl-hydrate), and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) antioxidant activity, and the amounts of six organic acids (folic, malic, citric, oxalic, succinic, and ascorbic) were determined in the needles of different half-sib families of Norway spruce seedlings. The results show that the TFC, antioxidant activity, and amounts of organic acids in the seedling needles depended on both the treatment duration and the genetic family. The strongest positive effect on the TFC was determined in the seedlings of the 477, 599, and 541 half-sib families after seed treatment with CP for 1 min (CP1). The TFC in these families increased from 118.06 mg g-1 to 312.6 mg g-1 compared to the control. Moreover, seed treatment with CP1 resulted in the strongest increase in the antioxidant activity of the needles of the 541 half-sib family seedlings; the antioxidant activity, determined by DPPH and ABTS tests, increased by 30 and 23%, respectively, compared to the control. The obtained results indicate that the CP effect on the amount of organic acids in the needles was dependent on the half-sib family. It was determined that treatment with CP1 increased the amount of five organic acids in the needles of the 541 half-sib family seedlings. The presented results show future possibilities for using cold plasma seed treatment in the food and pharmacy industries.

3.
Plants (Basel) ; 11(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406836

RESUMO

Among the innovative technologies being elaborated for sustainable agriculture, one of the most rapidly developing fields relies on the positive effects of non-thermal plasma (NTP) treatment on the agronomic performance of plants. A large number of recent publications have indicated that NTP effects are far more persistent and complex than it was supposed before. Knowledge of the molecular basis and the resulting outcomes of seed treatment with NTP is rapidly accumulating and requires to be analyzed and presented in a systematic way. This review focuses on the biochemical and physiological processes in seeds and plants affected by seed treatment with NTP and the resulting impact on plant metabolism, growth, adaptability and productivity. Wide-scale changes evolving at the epigenomic, transcriptomic, proteomic and metabolic levels are triggered by seed irradiation with NTP and contribute to changes in germination, early seedling growth, phytohormone amounts, metabolic and defense enzyme activity, secondary metabolism, photosynthesis, adaptability to biotic and abiotic stress, microbiome composition, and increased plant fitness, productivity and growth on a longer time scale. This review highlights the importance of these novel findings, as well as unresolved issues that remain to be investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...