Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Lett ; 49(12): 3416-3419, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875634

RESUMO

We theoretically propose a type of tunable polarization retarder, which is composed of sequences of half-wave and quarter-wave polarization retarders, allowing operation at broad spectral bandwidth. The constituent retarders are composed of stacked standard half-wave retarders and quarter-wave retarders rotated at designated angles relative to their fast polarization axes. The proposed composite retarder (CR) can be tuned to an arbitrary value of the retardance by varying the middle retarder alone while maintaining its broadband spectral bandwidth intact.

2.
Phys Rev Lett ; 129(24): 240505, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563260

RESUMO

We introduce a quantum control technique using polychromatic pulse trains, consisting of pulses with different carrier frequencies, i.e., different detunings with respect to the qubit transition frequency. We derive numerous polychromatic pulse trains, which generate broadband, narrowband, and passband excitation profiles for different target transition probabilities. This makes it possible to create high-fidelity excitation profiles which are either (i) robust to deviations in the experimental parameters, which is attractive for quantum computing, or (ii) more sensitive to such variations, which is attractive for crosstalk elimination and quantum sensing. The method is demonstrated experimentally using one of IBM's superconducting quantum processors, in a very good agreement between theory and experiment. These results demonstrate both the excellent coherence properties of the IBM qubits and the accuracy, robustness, and flexibility of the proposed quantum control technique. They also show that the detuning is a control parameter which is as efficient as the pulse phase that is commonly used in composite pulses. Hence the method opens a variety of perspectives for quantum control in areas where phase manipulation is difficult or inaccurate.

3.
Sci Adv ; 2(7): e1600093, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27419233

RESUMO

Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer.


Assuntos
Teoria Quântica , Íons/química , Micro-Ondas , Modelos Químicos , Marcadores de Spin , Itérbio/química
4.
Appl Opt ; 51(31): 7466-74, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23128692

RESUMO

We propose and experimentally demonstrate novel types of composite sequences of half-wave and quarter-wave polarization retarders, permitting operation at either ultrabroad spectral bandwidth or narrow bandwidth. The retarders are composed of stacked standard half-wave retarders and quarter-wave retarders of equal thickness. To our knowledge, these home-built devices outperform all commercially available compound retarders, made of several birefringent materials.

5.
J Opt Soc Am A Opt Image Sci Vis ; 29(3): 265-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22472756

RESUMO

Driving on an analogy with the technique of composite pulses in quantum physics, we propose highly efficient broadband polarization converters composed of sequences of ordinary retarders rotated at specific angles with respect to their fast-polarization axes.

6.
Opt Lett ; 36(7): 1275-7, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21479056

RESUMO

A vital requirement for a quantum computer is the ability to locally address, with high fidelity, any of its qubits without affecting their neighbors. We propose an addressing method using composite sequences of laser pulses that dramatically reduces the addressing error in a lattice of closely spaced atoms or ions and at the same time significantly enhances the robustness of qubit manipulations. To this end, we design novel (to our knowledge) high-fidelity composite pulses for the most important single-qubit operations. In principle, this method allows one to beat the diffraction limit, for only atoms situated in a small spatial region around the center of the laser beam are excited, well within the laser beam waist.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...