Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 120(1): 193-204, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10318697

RESUMO

Etiolated seedlings of wild type and the chlorina f2 mutant of barley (Hordeum vulgare) were exposed to greening at either 5 degrees C or 20 degrees C and continuous illumination varying from 50 to 800 &mgr;mol m-2 s-1. Exposure to either moderate temperature and high light or low temperature and moderate light inhibited chlorophyll a and b accumulation in the wild type and in the f2 mutant. Continuous illumination under these greening conditions resulted in transient accumulations of zeaxanthin, concomitant transient decreases in violaxanthin, and fluctuations in the epoxidation state of the xanthophyll pool. Photoinhibition-induced xanthophyll-cycle activity was detectable after only 3 h of greening at 20 degrees C and 250 &mgr;mol m-2 s-1. Immunoblot analyses of the accumulation of the 14-kD early light-inducible protein but not the major (Lhcb2) or minor (Lhcb5) light-harvesting polypeptides demonstrated transient kinetics similar to those observed for zeaxanthin accumulation during greening at either 5 degrees C or 20 degrees C for both the wild type and the f2 mutant. Furthermore, greening of the f2 mutant at either 5 degrees C or 20 degrees C indicated that Lhcb2 is not essential for the regulation of the xanthophyll cycle in barley. These results are consistent with the thesis that early light-inducible proteins may bind zeaxanthin as well as other xanthophylls and dissipate excess light energy to protect the developing photosynthetic apparatus from excess excitation. We discuss the role of energy balance and photosystem II excitation pressure in the regulation of the xanthophyll cycle during chloroplast biogenesis in wild-type barley and the f2 mutant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...