Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(9): 8731-8739, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30648848

RESUMO

Ciliated lung epithelial cells and the airway surface liquid (ASL) comprise one of the body's most important protective systems. This system is finely tuned, and perturbations to ASL rheology, ASL depth, ASL pH, the transepithelial potential, and the cilia beat frequency are all associated with disease pathology. Further, these apparently distinct properties interact with each other in a complex manner. For example, changes in ASL rheology can result from altered mucin secretion, changes in ASL pH, or changes in ASL depth. Thus, one of the great challenges in trying to understand airway pathology is that the properties of the ASL/epithelial cell system need to be assessed near-simultaneously and without perturbing the sample. Here, we show that nanosensor probes mounted on a scanning ion conductance microscope make this possible for the first time, without any need for labeling. We also demonstrate that ASL from senescence-retarded human bronchial epithelial cells retains its native properties. Our results demonstrate that by using a nanosensor approach, it is possible to pursue faster, more accurate, more coherent, and more informative studies of ASL and airway epithelia in health and disease.


Assuntos
Técnicas Biossensoriais/métodos , Mucosa Respiratória/metabolismo , Brônquios/citologia , Brônquios/metabolismo , Células Cultivadas , Cílios/fisiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Nanotecnologia , Mucosa Respiratória/citologia
2.
Thorax ; 73(9): 847-856, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29748250

RESUMO

INTRODUCTION: Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. METHODS: We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (Vt), short circuit current (Isc), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. RESULTS: Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and ßENaC mRNA by 30%. Transfections reduced Vt, the amiloride-sensitive Isc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. CONCLUSION: Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Canais Epiteliais de Sódio/genética , Inativação Gênica , RNA Interferente Pequeno , Transfecção/métodos , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Camundongos , Nanopartículas
3.
Methods Mol Biol ; 906: 89-99, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22791426

RESUMO

Immobilization of functional proteins such as enzymes on solid surfaces produces a variety of effects ranging from the reversal and strong inhibition to the enhancement of protein stability and function. Such effects are protein-dependent and are affected by the physical and chemical properties of the surfaces. Functional consequences of protein immobilization on the surface of gold nanoparticles (AuNPs) are protein-dependent and require thorough investigation using suitable functional tests. However, traditional approaches to making control samples, i.e., immobilized protein vs. protein in solution in absence of any nanoparticles do not provide sufficiently identical reaction conditions and complicate interpretation of the results. This report provides advice and methods for preparing AuNP-conjugated preparations generally suitable for studying the effects of immobilization on the activity and stability of different functional proteins. We use bovine catalase to illustrate our approach, but the methods are easily adaptable to any other enzyme or protein. The AuNP-immobilized enzyme showed increased stability at elevated temperatures compared to the same enzyme in solution.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Proteínas/química , Proteínas/metabolismo , Animais , Catalase/química , Catalase/metabolismo , Bovinos , Ensaios Enzimáticos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Ligação Proteica , Estabilidade Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...