Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137503

RESUMO

Inactivation of the Snca gene in young mice by chronic injections of tamoxifen (TAM), a selective estrogen receptor modifier, has been shown to decrease the level of alpha-synuclein, a key peptide in the pathogenesis of Parkinson's disease. In young mice, different time courses of the effect were observed in different brain areas, meaning associated disturbances in the intracerebral relations, namely in brain function after TAM-induced synucleinopathy. METHODS: We analyzed electroencephalogram (EEG) coherence ("functional connectivity") between the cortex (MC), putamen (Pt), and dopamine-producing brain regions (ventral tegmental area, VTA, and substantia nigra, SN) in two groups of two-month-old male mice. We compared EEG coherences in the conditional knockout Sncaflox/flox mice with those in their genetic background (C57Bl6J) one, two, and three months after chronic (for five days) intraperitoneal injections of TAM or the vehicle (corn oil). The EEG coherences in the TAM-treated group were compared with those in the alpha-synuclein knockout mice. RESULTS: A significant suppression of EEG coherence in the TAM-treated mice versus the vehicle group was observed in all inter-structural relations, with the exception of MC-VTA at one and three months and VTA-SN at two months after the injections. Suppressive changes in EEG coherence were observed in the alpha-synuclein knockout mice as well; the changes were similar to those in TAM-treated mice three months after treatment. CONCLUSION: our data demonstrate a combined time-dependent suppressive effect induced by TAM on intracerebral EEG coherence.

2.
Biomed Pharmacother ; 156: 113986, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411653

RESUMO

Mutations in the gene encoding the RNA/DNA-binding protein Fused in Sarcoma (FUS) have been detected in familial amyotrophic lateral sclerosis (ALS) patients. FUS has been found to be a critical component of the oxidative damage repair complex that might explain its role in neurodegeneration. Here, we examined what impact antioxidant treatment with thiamine (vitamine B1), or its more bioavailable derivative O,S-dibenzoylthiamine (DBT), would have on the hallmarks of pathology in the FUS[1-359]-transgenic mouse model of ALS. From 8-weeks old, in the pre-symptomatic phase of disease, animals received either thiamine, DBT (200 mg/kg/day), or vehicle for 6 weeks. We examined physiological, behavioral, molecular and histological outcomes, as well as the serum metabolome using nuclear magnetic resonance (NMR). The DBT-treated mice displayed improvements in physiological outcomes, motor function and muscle atrophy compared to vehicle, and the treatment normalized levels of brain glycogen synthase kinase-3ß (GSK-3ß), GSK-3ß mRNA and IL-1ß mRNA in the spinal cord. Analysis of the metabolome revealed an increase in the levels of choline and lactate in the vehicle-treated FUS mutants alone, which is also elevated in the cerebrospinal fluid of ALS patients, and reduced glucose and lipoprotein concentrations in the FUS[1-359]-tg mice, which were not the case in the DBT-treated mutants. The administration of thiamine had little impact on the outcome measures, but it did normalize circulating HDL levels. Thus, our study shows that DBT therapy in FUS mutants is more effective than thiamine and highlights how metabolomics may be used to evaluate therapy in this model.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteína FUS de Ligação a RNA/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Atrofia Muscular , Camundongos Transgênicos , Tiamina/farmacologia , Tiamina/uso terapêutico , Metaboloma , RNA Mensageiro/metabolismo
3.
CNS Neurosci Ther ; 27(7): 765-775, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33754495

RESUMO

AIMS: To assess effects of DF402, a bioisostere of Dimebon/Latrepirdine, on the disease progression in the transgenic model of amyotrophic lateral sclerosis (ALS) caused by expression of pathogenic truncated form of human FUS protein. METHODS: Mice received DF402 from the age of 42 days and the onset of clinical signs, the disease duration and animal lifespan were monitored for experimental and control animals, and multiple parameters of their gait were assessed throughout the pre-symptomatic stage using CatWalk system followed by a bioinformatic analysis. RNA-seq was used to compare the spinal cord transcriptomes of wild-type, untreated, and DF402-treated FUS transgenic mice. RESULTS: DF402 delays the onset and slows the progression of pathology. We developed a CatWalk analysis protocol that allows detection of gait changes in FUS transgenic mice and the effect of DF402 on their gait already at early pre-symptomatic stage. At this stage, a limited number of genes significantly change expression in transgenic mice and for 60% of these genes, DF402 treatment causes the reversion of the expression pattern. CONCLUSION: DF402 slows down the disease progression in the mouse model of ALS, which is consistent with previously reported neuroprotective properties of Dimebon and its other bioisosteres. These results suggest that these structures can be considered as lead compounds for further optimization to obtain novel medicines that might be used as components of complex ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Progressão da Doença , Indóis/administração & dosagem , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Marcha/efeitos dos fármacos , Marcha/fisiologia , Humanos , Indóis/química , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...