Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422591

RESUMO

Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.


Assuntos
Ceramidas , Oxirredutases , Ceramidas/farmacologia , Ceramidas/química , Oxirredutases/metabolismo , Ciclopropanos/farmacologia
2.
Bioorg Chem ; 121: 105668, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219046

RESUMO

Sphingosine kinase (SphK), which catalyzes the transfer of phosphate from ATP to sphingosine (Sph) generating sphingosine-1-phosphate (S1P) has emerged as therapeutic target since the discovery of connections of S1P with cancer progress. So far, most effort has focused on the development of inhibitors of SphK1, and selective inhibitors of SphK2 have been much less explored. Here, we describe the syntheses of new sphingosine derivatives bearing a tetrasubstituted carbon atom at C-2, dimethylhydrazino or azo moieties in the polar head, and alkane, alkene or alkyne moieties as linkers between the polar ahead and the fatty tail. In vitro inhibitory assays based on a time resolved fluorescence energy transfer (TR-FRET) have revealed the hydrazino and alkynyl moieties as the best combination for the design of selective SphK2 inhibitors (19a and 19b). Docking studies showed that compounds 19a-b have the optimal binding to SphK2 through the exploitation of polar but also hydrophobic interactions of their head group with the head of the enzyme binding pocket, while also producing full contact of the fatty tail with the hydrophobic pocket of the enzyme. By contrast, this elongation causes loss of contact surface with the shorter hydrophobic toe of the SphK1 isoform, thus accounting for the SphK2-biased selectivity of these compounds. Cell viability assays of the most promising candidates 19a-b have shown that 19a is not cytotoxic to human endothelial cells at 30 µM.


Assuntos
Antineoplásicos , Esfingosina , Antineoplásicos/farmacologia , Células Endoteliais/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...