Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693449

RESUMO

Enveloped viruses often exhibit a pleomorphic morphology, ranging in size from 100nm spheres to tens-of-micron long filaments. For influenza A virus (IAV), spheres enable rapid replication and minimize metabolic cost, while filaments resist effects of antibodies or other cell-entry pressures. The current paradigm is that virion shape changes require genetic adaptation; however, a virus evolved to alter its shape phenotypically would outperform one that relies on genetic selection. Using a novel quantitative flow virometry assay to characterize virion shape dynamics we find that IAV rapidly tunes its shape distribution to favor spheres under optimal, and filaments under attenuating conditions including the presence of antibodies. We identify membrane tension as a key cue sensed by IAV determining shape distributions. This phenotypic shift outpaces genetic change and serves to enable additional life cycles under pressure. Our work expands knowledge of the complex host-virus interplay to include viral responses to the local environment by optimizing its structure to maximize replication and ultimately host-host transmission.

2.
Front Pharmacol ; 13: 930308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873556

RESUMO

Metformin is an oral antidiabetic agent that has been widely used in clinical practice for over 60 years, and is currently the most prescribed antidiabetic drug worldwide. However, the molecular mechanisms of metformin action in different tissues are still not completely understood. Although metformin-induced inhibition of mitochondrial respiratory chain Complex I and activation of AMP-activated protein kinase have been observed in many studies, published data is inconsistent. Furthermore, metformin concentrations used for in vitro studies and their pharmacological relevance are a common point of debate. The aim of this study was to explore the effects of different metformin concentrations on energy metabolism and activity of relevant signaling pathways in C2C12 muscle cells in vitro. In order to determine if therapeutic metformin concentrations have an effect on skeletal muscle cells, we used micromolar metformin concentrations (50 µM), and compared the effects with those of higher, millimolar concentrations (5 mM), that have already been established to affect mitochondrial function and AMPK activity. We conducted all experiments in conditions of high (25 mM) and low glucose (5.5 mM) concentration, in order to discern the role of glucose availability on metformin action. According to our results, micromolar metformin treatment did not cause Complex I inhibition nor AMPK activation. Also, cells cultured in low glucose medium were more sensitive to Complex I inhibition, mitochondrial membrane depolarization and AMPK activation by millimolar metformin, but cells cultured in high glucose medium were more prone to induction of ROS production. In conclusion, even though suprapharmacological metformin concentrations cause Complex I inhibition and AMPK activation in skeletal muscle cells in vitro, therapeutic concentrations cause no such effect. This raises the question if these mechanisms are relevant for therapeutic effects of metformin in skeletal muscle.

3.
ACS Infect Dis ; 8(8): 1543-1552, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819162

RESUMO

Understanding mechanisms of resistance to antiviral inhibitors can reveal nuanced features of targeted viral mechanisms and, in turn, lead to improved strategies for inhibitor design. Arbidol is a broad-spectrum antiviral that binds to and prevents the fusion-associated conformational changes in the trimeric influenza A virus (IAV) hemagglutinin (HA). The rate-limiting step during the HA-mediated membrane fusion is the release of the hydrophobic fusion peptides from a conserved pocket on HA. Here, we investigated how destabilizing or stabilizing mutations in or near the fusion peptide affect viral sensitivity to Arbidol. The degree of sensitivity was proportional to the extent of fusion-peptide stability on the prefusion HA: stabilized mutants were more sensitive, and destabilized ones were resistant to Arbidol. Single-virion membrane fusion experiments for representative wild-type (WT) and mutant viruses demonstrated that resistance is a direct consequence of fusion-peptide destabilization not requiring reduced Arbidol binding to HA. Our results support the model whereby the probability of individual HAs extending to engage the target membrane is determined by the composite of two critical forces: a "tug" on the fusion peptide by HA rearrangements near the Arbidol binding site and the key interactions stabilizing the fusion peptide in the prefusion pocket. Arbidol increases and destabilizing mutations decrease the free-energy cost for fusion-peptide release, accounting for the observed resistance. Our findings have broad implications for fusion inhibitor design, viral mechanisms of resistance, and our basic understanding of HA-mediated membrane fusion.


Assuntos
Vírus da Influenza A , Antivirais/química , Antivirais/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas/genética , Indóis , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Sulfetos
4.
Nat Microbiol ; 6(5): 617-629, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737748

RESUMO

Many enveloped animal viruses produce a variety of particle shapes, ranging from small spherical to long filamentous types. Characterization of how the shape of the virion affects infectivity has been difficult because the shape is only partially genetically encoded, and most pleomorphic virus structures have no selective advantage in vitro. Here, we apply virus fractionation using low-force sedimentation, as well as antibody neutralization coupled with RNAScope, single-particle membrane fusion experiments and stochastic simulations to evaluate the effects of differently shaped influenza A viruses and influenza viruses pseudotyped with Ebola glycoprotein on the infection of cells. Our results reveal that the shape of the virus particles determines the probability of both virus attachment and membrane fusion when viral glycoprotein activity is compromised. The larger contact interface between a cell and a larger particle offers a greater probability that several active glycoproteins are adjacent to each other and can cooperate to induce membrane merger. Particles with a length of tens of micrometres can fuse even when 95% of the glycoproteins are inactivated. We hypothesize that non-genetically encoded variable particle shapes enable pleomorphic viruses to overcome selective pressure and may enable adaptation to infection of cells by emerging viruses such as Ebola. Our results suggest that therapeutics targeting filamentous virus particles could overcome antiviral drug resistance and immune evasion in pleomorphic viruses.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Proteínas do Envelope Viral/química , Vírion/fisiologia , Ligação Viral , Linhagem Celular , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/ultraestrutura , Proteínas do Envelope Viral/metabolismo , Vírion/química , Vírion/ultraestrutura
5.
Elife ; 4: e11009, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26613408

RESUMO

Membrane fusion is the critical step for infectious cell penetration by enveloped viruses. We have previously used single-virion measurements of fusion kinetics to study the molecular mechanism of influenza-virus envelope fusion. Published data on fusion inhibition by antibodies to the 'stem' of influenza virus hemagglutinin (HA) now allow us to incorporate into simulations the provision that some HAs are inactive. We find that more than half of the HAs are unproductive even for virions with no bound antibodies, but that the overall mechanism is extremely robust. Determining the fraction of competent HAs allows us to determine their rates of target-membrane engagement. Comparison of simulations with data from H3N2 and H1N1 viruses reveals three independent functional variables of HA-mediated membrane fusion closely linked to neutralization susceptibility. Evidence for compensatory changes in the evolved mechanism sets the stage for studies aiming to define the molecular constraints on HA evolvability.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/fisiologia , Internalização do Vírus , Simulação por Computador
6.
Cent Eur J Public Health ; 23 Suppl: S67-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26849547

RESUMO

AIM: The aim of the study was to determine the effects of Greek folk dancing on postural stability in middle age women. METHODS: Sixty-three women aged from 47-53 participated in this study. All participants were randomly divided into the experimental group - 33 participants (mean ± SD; body height=160.13 ± 12.07 cm, body mass=63.81 ± 10.56 kg), and the control group - 30 participants (mean ± SD; body height=160.63 ± 6.22 cm, body mass=64.79 ± 8.19 kg). The following tests were used to evaluate the motor balance and posture stability of participants; the double-leg stance along the length of a balance beam (eyes open), the double-leg stance along the width of a balance beam (eyes open), the single-leg stance (eyes open) and the double-leg stance on one's toes (eyes closed). The Functional Reach Test for balance and the Star Excursion Balance Test were used to evaluate dynamic balance. RESULTS: The multivariate analysis of covariance of static and dynamic balance between participants of the experimental and control group at the final measuring, with neutralized differences at the initial measuring (Wilks' λ=0.45), revealed a significant difference (p<0.05). The intergroup difference at the final measuring was also found to be significant (p<0.05) for the following variables; the double-leg stance on one's toes, the Functional Reach Test, balance of the right anterolateral, balance of the right posterolateral and balance of the left posteromedial. CONCLUSION: An organized dance activity programme does lead to the improvement of static and dynamic balance in middle aged women.


Assuntos
Acidentes por Quedas/prevenção & controle , Dança/fisiologia , Equilíbrio Postural/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Resultado do Tratamento
7.
J Hum Kinet ; 40: 181-7, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25031686

RESUMO

Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies.

8.
Cell Microbiol ; 15(11): 1866-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23701235

RESUMO

Hepatitis C virus (HCV) is a global health concern infecting 170 million people worldwide. Previous studies indicate that the extract from milk thistle known as silymarin and its main component silibinin inhibit HCV infection. Here we investigated the mechanism of anti-HCV action of silymarin-derived compounds at the molecular level. By using live-cell confocal imaging, single particle tracking, transmission electron microscopy and biochemical approaches on HCV-infected human hepatoma cells and primary hepatocytes, we show that silibinin potently inhibits HCV infection and hinders HCV entry by slowing down trafficking through clathrin-coated pits and vesicles. Detailed analyses revealed that silibinin altered the formation of both clathrin-coated pits and vesicles in cells and caused abnormal uptake and trafficking of transferrin, a well-known cargo of the clathrin endocytic pathway. Silibinin also inhibited infection by other viruses that enter cells by clathrin-mediated endocytosis including reovirus, vesicular stomatitis and influenza viruses. Our study demonstrates that silibinin inhibits HCV early steps of infection by affecting endosomal trafficking of virions. It provides new insights into the molecular mechanisms of action of silibinin against HCV entry and also suggests that silibinin is a potential broad-spectrum antiviral therapy.


Assuntos
Antivirais/metabolismo , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Silimarina/metabolismo , Internalização do Vírus/efeitos dos fármacos , Células Cultivadas , Técnicas Citológicas , Hepacivirus/fisiologia , Hepatócitos/fisiologia , Hepatócitos/virologia , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Silybum marianum/química , Silibina , Silimarina/isolamento & purificação
9.
Elife ; 2: e00333, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23550179

RESUMO

Influenza virus penetrates cells by fusion of viral and endosomal membranes catalyzed by the viral hemagglutinin (HA). Structures of the initial and final states of the HA trimer define the fusion endpoints, but do not specify intermediates. We have characterized these transitions by analyzing low-pH-induced fusion kinetics of individual virions and validated the analysis by computer simulation. We detect initial engagement with the target membrane of fusion peptides from independently triggered HAs within the larger virus-target contact patch; fusion then requires engagement of three or four neighboring HA trimers. Effects of mutations in HA indicate that withdrawal of the fusion peptide from a pocket in the pre-fusion trimer is rate-limiting for both events, but the requirement for cooperative action of several HAs to bring the fusing membranes together leads to a long-lived intermediate state for single, extended HA trimers. This intermediate is thus a fundamental aspect of the fusion mechanism. DOI:http://dx.doi.org/10.7554/eLife.00333.001.


Assuntos
Membrana Celular/metabolismo , Endossomos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Modelos Biológicos , Orthomyxoviridae/metabolismo , Internalização do Vírus , Membrana Celular/virologia , Simulação por Computador , Endossomos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Cinética , Bicamadas Lipídicas , Membranas Artificiais , Mutação , Orthomyxoviridae/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Processos Estocásticos , Vírion
10.
PLoS One ; 7(3): e31566, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412838

RESUMO

M2 protein of influenza A viruses is a tetrameric transmembrane proton channel, which has essential functions both early and late in the virus infectious cycle. Previous studies of proton transport by M2 have been limited to measurements outside the context of the virus particle. We have developed an in vitro fluorescence-based assay to monitor internal acidification of individual virions triggered to undergo membrane fusion. We show that rimantadine, an inhibitor of M2 proton conductance, blocks the acidification-dependent dissipation of fluorescence from a pH-sensitive virus-content probe. Fusion-pore formation usually follows internal acidification but does not require it. The rate of internal virion acidification increases with external proton concentration and saturates with a pK(m) of ∼4.7. The rate of proton transport through a single, fully protonated M2 channel is approximately 100 to 400 protons per second. The saturating proton-concentration dependence and the low rate of internal virion acidification derived from authentic virions support a transporter model for the mechanism of proton transfer.


Assuntos
Vírus da Influenza A/metabolismo , Transporte de Íons/fisiologia , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Antivirais/farmacologia , Fluoresceína/metabolismo , Concentração de Íons de Hidrogênio , Vírus da Influenza A/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Cinética , Prótons , Rimantadina/farmacologia , Vírion/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
11.
Traffic ; 12(9): 1179-95, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21736684

RESUMO

The viral factories of mammalian reovirus (MRV) are cytoplasmic structures that serve as sites of viral genome replication and particle assembly. A 721-aa MRV non-structural protein, µNS, forms the factory matrix and recruits other viral proteins to these structures. In this report, we show that µNS contains a conserved C-proximal sequence (711-LIDFS-715) that is similar to known clathrin-box motifs and is required for recruitment of clathrin to viral factories. Clathrin recruitment by µNS occurs independently of infecting MRV particles or other MRV proteins. Ala substitution for a single Leu residue (mutation L711A) within the putative clathrin-binding motif of µNS inhibits clathrin recruitment, but does not prevent formation or expansion of viral factories. Notably, clathrin-dependent cellular functions, including both endocytosis and secretion, are disrupted in cells infected with MRV expressing wild-type, but not L711A, µNS. These results identify µNS as a novel adaptor-like protein that recruits cellular clathrin to viral factories, disrupting normal functions of clathrin in cellular membrane trafficking. To our knowledge, this is the only viral or bacterial protein yet shown to interfere with clathrin functions in this manner. The results additionally establish a new approach for studies of clathrin functions, based on µNS-mediated sequestration.


Assuntos
Clatrina/metabolismo , Corpos de Inclusão Viral/metabolismo , Orthoreovirus de Mamíferos/fisiologia , Transporte Proteico/fisiologia , Infecções por Reoviridae/metabolismo , Proteínas não Estruturais Virais/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Linhagem Celular , Clatrina/química , Clatrina/genética , Invaginações Revestidas da Membrana Celular/metabolismo , Corpos de Inclusão Viral/química , Camundongos , Orthoreovirus de Mamíferos/patogenicidade , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
12.
J Virol ; 83(14): 7004-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19439475

RESUMO

The outer capsid of the nonenveloped mammalian reovirus contains 200 trimers of the micro1 protein, each complexed with three copies of the protector protein sigma3. Conformational changes in micro1 following the proteolytic removal of sigma3 lead to release of the myristoylated N-terminal cleavage fragment micro1N and ultimately to membrane penetration. The micro1N fragment forms pores in red blood cell (RBC) membranes. In this report, we describe the interaction of recombinant micro1 trimers and synthetic micro1N peptides with both RBCs and liposomes. The micro1 trimer mediates hemolysis and liposome disruption under conditions that promote the micro1 conformational change, and mutations that inhibit micro1 conformational change in the context of intact virus particles also prevent liposome disruption by particle-free micro1 trimer. Autolytic cleavage to form micro1N is required for hemolysis but not for liposome disruption. Pretreatment of RBCs with proteases rescues hemolysis activity, suggesting that micro1N cleavage is not required when steric barriers are removed. Synthetic myristoylated micro1N peptide forms size-selective pores in liposomes, as measured by fluorescence dequenching of labeled dextrans of different sizes. Addition of a C-terminal solubility tag to the peptide does not affect activity, but sequence substitution V13N or L36D reduces liposome disruption. These substitutions are in regions of alternating hydrophobic residues. Their locations, the presence of an N-terminal myristoyl group, and the full activity of a C-terminally extended peptide, along with circular dichroism data that indicate prevalence of beta-strand secondary structure, suggest a model in which micro1N beta-hairpins assemble in the membrane to form a beta-barrel pore.


Assuntos
Proteínas do Capsídeo/metabolismo , Membrana Celular/metabolismo , Orthoreovirus de Mamíferos/fisiologia , Infecções por Reoviridae/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Membrana Celular/química , Membrana Celular/virologia , Galinhas , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/virologia , Humanos , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Dados de Sequência Molecular , Orthoreovirus de Mamíferos/química , Orthoreovirus de Mamíferos/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional , Infecções por Reoviridae/virologia , Montagem de Vírus
13.
Proc Natl Acad Sci U S A ; 105(30): 10571-6, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18653761

RESUMO

Membrane penetration by reovirus is associated with conversion of a metastable intermediate, the ISVP, to a further-disassembled particle, the ISVP*. Factors that promote this conversion in cells are poorly understood. Here, we report the in vitro characterization of a positive-feedback mechanism for promoting ISVP* conversion. At high particle concentration, conversion approximated second-order kinetics, and products of the reaction operated in trans to promote the conversion of target ISVPs. Pore-forming peptide mu1N, which is released from particles during conversion, was sufficient for promoting activity. A mutant that does not undergo mu1N release failed to exhibit second-order conversion kinetics and also failed to promote conversion of wild-type target ISVPs. Susceptibility of target ISVPs to promotion in trans was temperature dependent and correlated with target stability, suggesting that capsid dynamics are required to expose the interacting epitope. A positive-feedback mechanism of promoting escape from the metastable intermediate has not been reported for other viruses but represents a generalizable device for sensing a confined volume, such as that encountered during cell entry.


Assuntos
Membrana Celular/metabolismo , Retroalimentação Fisiológica , Reoviridae/genética , Animais , Capsídeo/química , Bovinos , Linhagem Celular , Epitopos , Eritrócitos/metabolismo , Hemólise , Insetos , Cinética , Camundongos , Modelos Biológicos , Temperatura
14.
EMBO J ; 27(8): 1289-98, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18369316

RESUMO

Nonenveloped animal viruses must disrupt or perforate a cell membrane during entry. Recent work with reovirus has shown formation of size-selective pores in RBC membranes in concert with structural changes in capsid protein mu1. Here, we demonstrate that mu1 fragments released from reovirus particles are sufficient for pore formation. Both myristoylated N-terminal fragment mu1N and C-terminal fragment phi are released from particles. Both also associate with RBC membranes and contribute to pore formation in the absence of particles, but mu1N has the primary and sufficient role. Particles with a mutant form of mu1, unable to release mu1N or form pores, lack the ability to associate with membranes. They are, however, recruited by pores preformed with peptides released from wild-type particles or with synthetic mu1N. The results provide evidence that docking to membrane pores by virus particles may be a next step in membrane penetration after pore formation by released peptides.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Membrana Celular/metabolismo , Orthoreovirus de Mamíferos/metabolismo , Peptídeos/metabolismo , Vírion/metabolismo , Animais , Membrana Celular/virologia , Hemólise/fisiologia , Camundongos
15.
J Biol Chem ; 282(16): 12210-9, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17284448

RESUMO

After crossing the cellular membrane barrier during cell entry, most animal viruses must undergo further disassembly before initiating viral gene expression. In many cases, these disassembly mechanisms remain poorly defined. For this report, we examined a final step in disassembly of the mammalian reovirus outer capsid: cytoplasmic release of the central, delta fragment of membrane penetration protein mu1 to yield the transcriptionally active viral core particle. An in vitro assay with reticulocyte lysate recapitulated the release of intact delta molecules. Requirements for activity in this system were shown to include a protein factor, ATP, and Mg(2+) and K(+) ions, consistent with involvement of a molecular chaperone such as Hsc70. Immunodepletion of Hsc70 and Hsp70 impaired delta release, which was then rescued by addition of purified Hsc70. Hsc70 was associated with released delta molecules not only in the lysate but also during cell entry. We conclude that Hsc70 plays a defined role in reovirus outer capsid disassembly, during or soon after membrane penetration, to prepare the entering particle for gene expression and replication.


Assuntos
Capsídeo/fisiologia , Regulação Viral da Expressão Gênica , Proteínas de Choque Térmico HSC70/fisiologia , Chaperonas Moleculares/química , Orthoreovirus de Mamíferos/metabolismo , Animais , Capsídeo/química , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Íons , Magnésio/química , Modelos Biológicos , Potássio/química , Coelhos , Reticulócitos/metabolismo
16.
Proc Natl Acad Sci U S A ; 103(44): 16496-501, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17053074

RESUMO

During cell entry, reovirus particles with a diameter of 70-80 nm must penetrate the cellular membrane to access the cytoplasm. The mechanism of penetration, without benefit of membrane fusion, is not well characterized for any such nonenveloped animal virus. Lysis of RBCs is an in vitro assay for the membrane perforation activity of reovirus; however, the mechanism of lysis has been unknown. In this report, osmotic-protection experiments using PEGs of different sizes revealed that reovirus-induced lysis of RBCs occurs osmotically, after formation of small size-selective lesions or "pores." Consistent results were obtained by monitoring leakage of fluorophore-tagged dextrans from the interior of resealed RBC ghosts. Gradient fractionations showed that whole virus particles, as well as the myristoylated fragment mu1N that is released from particles, are recruited to RBC membranes in association with pore formation. We propose that formation of small pores is a discrete, intermediate step in the reovirus membrane-penetration pathway, which may be shared by other nonenveloped animal viruses.


Assuntos
Eritrócitos/citologia , Eritrócitos/virologia , Membranas Artificiais , Modelos Biológicos , Orthoreovirus de Mamíferos/fisiologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Bovinos , Dextranos , Hemólise , Pressão Osmótica , Polietilenoglicóis , Conformação Proteica , Proteínas do Envelope Viral
17.
Biochemistry ; 43(7): 1928-38, 2004 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-14967033

RESUMO

The linear peptide 12p1 (RINNIPWSEAMM) was previously isolated from a phage display library and was found to inhibit interaction of HIV-1 gp120 with both CD4 and a CCR5 surrogate, mAb 17b [Ferrer, M., and Harrison, S. (1999) J. Virol. 73, 5795-5802]. In this work, we investigated the mechanism that leads to this dual inhibition of gp120 binding. We found that there is a direct interaction of 12p1 with gp120, which occurs with a binding stoichiometry of 1:1. The peptide inhibits binding of monomeric YU2 gp120 to both sCD4 and 17b at IC(50) values of 1.1 and 1.6 microM, respectively. The 12p1 peptide also inhibited the binding of these ligands to trimeric envelope glycoproteins, blocked the binding of gp120 to the native coreceptor CCR5, and specifically inhibited HIV-1 infection of target cells in vitro. Analyses of sCD4 saturation of monomeric gp120 in the presence or absence of a fixed concentration of peptide suggest that 12p1 suppression of CD4 binding to gp120 is due to allosteric inhibitory effects rather than competitive inhibition of CD4 binding. Using a panel of gp120 mutants that exhibit weakened inhibition by 12p1, the putative binding site of the peptide was mapped to a region immediately adjacent to, but distinguishable from, the CD4 binding footprint. In the case of the peptide, the effects of single-12p1 residue substitutions and various peptide truncations indicate that the side chain of Trp7 and other structural elements of 12p1 are critical for gp120 binding or efficient inhibition of binding of a ligand to gp120. Finally, 12p1 was unable to inhibit binding of sCD4 to a gp120 mutant that is believed to resemble the CD4-induced conformation of gp120. These results suggest that 12p1 preferentially binds gp120 prior to engagement of CD4; binding of the peptide to gp120 limits the interaction with ligands (CD4 and CCR5) that are generally crucial for viral entry. More importantly, these results indicate that 12p1 binds to a unique site that may prove to be a prototypic target for novel CD4-gp120 inhibitors.


Assuntos
Fármacos Anti-HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Oligopeptídeos/química , Regulação Alostérica , Animais , Fármacos Anti-HIV/metabolismo , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Antagonistas dos Receptores CCR5 , Antígenos CD4/metabolismo , Linhagem Celular , Cães , HIV-1/patogenicidade , Humanos , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Ligação Proteica , Receptores CCR5/metabolismo , Solubilidade , Ressonância de Plasmônio de Superfície , Linfócitos T/metabolismo , Linfócitos T/virologia
18.
J Virol ; 77(2): 1245-56, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12502842

RESUMO

The live, attenuated vaccine simian immunodeficiency virus SIVmac239Deltanef efficiently protects rhesus macaques against infection with wild-type SIVmac but occasionally causes CD4(+) T-cell depletion and progression to simian AIDS (SAIDS). Virus recovered from a vaccinated macaque (Rh1490) that progressed to SAIDS had acquired an additional deletion in the nef gene, resulting in a frameshift that restored the original nef open reading frame (R. I. Connor, D. C. Montefiori, J. M. Binley, J. P. Moore, S. Bonhoeffer, A. Gettie, E. A. Fenamore, K. E. Sheridan, D. D. Ho, P. J. Dailey, and P. A. Marx, J. Virol. 72:7501-7509, 1998). Intravenous inoculation of the Rh1490 viral isolate into four naive rhesus macaques induced CD4(+) T-cell depletion and disease in three out of four animals within 2 years, indicating a restoration of virulence. A DNA fragment encompassing the truncated nef gene amplified from the Rh1490 isolate was inserted into the genetic backbone of SIVmac239. The resulting clone, SIVmac239-Delta2nef, expressed a Nef protein of approximately 23 kDa, while the original SIVmac239Deltanef clone expressed a shorter protein of 8 kDa. The revertant form of Nef did not cause downregulation of CD4, CD3, or major histocompatibility complex class I. The infectivity of SIVmac239-Delta2nef was similar to that of SIVmac239Deltanef in single-cycle assays using indicator cell lines. In contrast, SIVmac239-Delta2nef replicated more efficiently than SIVmac239Deltanef in peripheral blood mononuclear cell (PBMC) cultures infected under unstimulated conditions. The p27 Gag antigen levels in SIVmac239-Delta2nef-infected cultures were still lower than those obtained with wild-type SIVmac239, consistent with a partial recovery of Nef function. The transcriptional activity of long terminal repeat (LTR)-luciferase constructs containing the nef deletions did not differ markedly from that of wild-type LTR. Introduction of a premature stop codon within Nef-Delta2 abolished the replicative advantage in PBMCs, demonstrating that the Nef-Delta2 protein, rather than the structure of the U3 region of the LTR, was responsible for the increase in viral replication. Taken together, these results show that SIV with a deletion in the nef gene can revert to virulence and that expression of a form of nef with multiple deletions may contribute to this process by increasing viral replication.


Assuntos
Produtos do Gene nef/fisiologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Produtos do Gene nef/química , Produtos do Gene nef/genética , Macaca mulatta , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Vírus da Imunodeficiência Símia/genética
19.
J Virol ; 76(4): 1588-99, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11799153

RESUMO

In vivo adaptation of simian-human immunodeficiency virus (SHIV) clone SHIV(SF33) resulted in the emergence of pathogenic isolate SHIV(SF33A), which caused a rapid and severe CD4(+) T-cell depletion when inoculated into rhesus macaques. Two molecular clones generated by inserting the env V1-to-V5 region amplified from SHIV(SF33A)-infected animals into the parental SHIV(SF33) genome retained a pathogenic phenotype. The gp120 envelope glycoproteins of pathogenic clones SHIV(SF33A2) and SHIV(SF33A5) conferred a threefold increase in viral entry and fusogenicity compared to the parental glycoprotein. Changes in gp120 were also responsible for a higher replication capacity and cytopathicity in primary CD4(+) T-cell cultures. Last, gp120 carried the determinants of SHIV(SF33A) neutralization resistance. Thus, changes in SHIV(SF33A) gp120 produced a set of properties that could account for the pathogenic phenotype observed in vivo. Measurement of antibody binding to SHIV(SF33A) viral particles revealed an increased exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody in a region that was shown to contribute to coreceptor binding. Exposure of this epitope occurred in the absence of CD4 binding, suggesting that the envelope glycoprotein of pathogenic SHIV(SF33A) clones folded in a conformation that was primed for interaction with CXCR4 or for the subsequent step of fusion.


Assuntos
Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , HIV-1/patogenicidade , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/patogenicidade , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Células Cultivadas , Efeito Citopatogênico Viral , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Humanos , Fusão de Membrana , Dados de Sequência Molecular , Recombinação Genética , Análise de Sequência de DNA , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...