Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362842

RESUMO

Electrochemical reactors utilizing flow-through electrodes (FTEs) provide an attractive path toward the efficient utilization of electrical energy, but their commercial viability and ultimate adoption hinge on attaining high currents to drive productivity and cost competitiveness. Conventional FTEs composed of random, porous media provide limited opportunity for architectural control and engineering of microscale transport. Alternatively, the design freedom engendered by additively manufacturing FTEs yields additional opportunities to further drive performance via flow engineering. Through experiment and validated continuum computation we analyze the mass transfer in three-dimensional (3D)-printed porous FTEs with periodic lattice structures and show that, in contrast to conventional electrodes, the mesoscopic length scales in 3D-printed electrodes lead to an increase in the mass correlation exponent as inertial flow effects dominate. The inertially enhanced mass transport yields mass transfer coefficients that exceed previously reported 3D-printed FTEs by 10 to 100 times, bringing 3D-printed FTE performance on par with conventional materials.

2.
J Vis Exp ; (148)2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31305526

RESUMO

This protocol demonstrates a method for electrochemical roughening of thin-film platinum electrodes without preferential dissolution at grain boundaries of the metal. Using this method, a crack free, thin-film macroelectrode surface with up to 40 times increase in active surface area was obtained. The roughening is easy to do in a standard electrochemical characterization laboratory and incudes the application of voltage pulses followed by extended application of a reductive voltage in a perchloric acid solution. The protocol includes the chemical and electrochemical preparation of both a macroscale (1.2 mm diameter) and microscale (20 µm diameter) platinum disc electrode surface, roughening the electrode surface and characterizing the effects of surface roughening on electrode active surface area. This electrochemical characterization includes cyclic voltammetry and impedance spectroscopy and is demonstrated for both the macroelectrodes and the microelectrodes. Roughening increases electrode active surface area, decreases electrode impedance, increases platinum charge injection limits to those of titanium nitride electrodes of same geometry and improves substrates for adhesion of electrochemically deposited films.


Assuntos
Técnicas Eletroquímicas , Platina , Impedância Elétrica , Eletrodos , Propriedades de Superfície
3.
Lab Chip ; 17(10): 1732-1739, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28448074

RESUMO

Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. Here we report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions and under drug stimuli. Human induced pluripotent stem cell-derived cardiomyocytes were cultured as a model system, and used to validate the platform with an excitation-contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. This platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.


Assuntos
Eletrofisiologia Cardíaca/instrumentação , Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Modelos Cardiovasculares , Potenciais de Ação/fisiologia , Eletrofisiologia Cardíaca/métodos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Microeletrodos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia
4.
Langmuir ; 29(1): 480-92, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23205859

RESUMO

Mixed metal sulfides containing combinations of W, Fe, Mo, Ni, and Ru were synthesized and screened for activity and stability for the hydrogen evolution reaction (HER) in aqueous hydrobromic acid (HBr). Co- and Ni-substituted RuS(2) were identified as potentially active HER electrocatalysts by high-throughput screening (HTS), and the specific compositions Co(0.4)Ru(0.6)S(2) and Ni(0.6)Ru(0.4)S(2) were identified by optimization. Hydrogen evolution activity of Co(0.4)Ru(0.6)S(2) in HBr is greater than RuS(2) or CoS(2) and comparable to Pt and commercial Rh(x)S(y). Structural and morphological characterizations of the Co-substituted RuS(2) suggest that the nanoparticulate solids are a homogeneous solid solution with a pyrite crystal structure. No phase separation is detected for Co substitutions below 30% by X-ray diffraction. In 0.5 M HBr electrolyte, the Co-Ru electrode material synthesized with 30% Co rapidly lost approximately 34% of the initial loading of Co; thereafter, it was observed to exhibit stable activity for HER with no further loss of Co. Density functional theory calculations indicate that the S(2)(2-) sites are the most important for HER and the presence of Co influences the S(2)(2-) sites such that the hydrogen binding energy at sufficiently high hydrogen coverage is decreased compared to ruthenium sulfide. Although showing high HER activity in a flow cell, the reverse reaction of hydrogen oxidation is slow on the RuS(2) catalysts tested when compared to platinum and rhodium sulfide, leaving rhodium sulfide as the only suitable tested material for a regenerative HBr cell due its stability compared to platinum.

5.
J Phys Chem B ; 113(3): 647-55, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19105643

RESUMO

Free-standing and supported films with a lateral gradient in composition were prepared using blends of poly(acrylic acid) (PAA)/sodium salt and its copolymers with acrylamide (AAm) in an applied electric field. The gradients were stabilized by complexation of carboxylate groups with metal species. To find the favorable conditions and components for successful blending and interaction with Fe and Ce species, we studied blending of the two PAA samples with molecular weights of 2000 and 15 000 Da with two copolymers of AA and AAm (with 10 and 70 wt % of AA units) and interaction of these blends with Fe(III) and Ce(IV) ions. The structure of the hybrid (blend) films was studied using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, X-ray diffraction, and optical microscopy. To ensure blend miscibility and efficient interaction with metal ions, the copolymer containing 70 wt % AA units has been used. The surface enrichment with metal species was observed at all experimental conditions studied in this work. For lateral gradient film formation, 15 000 Da PAA has been used to avoid uneven distribution of the homopolymer in the film, observed for 2000 Da PAA. The gradient films were characterized by XPS. The lateral gradient of functionality such as COONa group or Fe content has been obtained at different strengths of electric field applied during film formation. The use of lower voltage allows one to prevent NaOH formation and creates more favorable conditions for development of a gradient polymer film. The Ce content gradient was not observed due to formation of large Ce oxide particles (> or = 750 nm), masking the gradient of functionality. For the first time, free-standing films with a lateral gradient in composition were prepared using an applied electric field.


Assuntos
Biomimética , Eletrólitos/química , Polímeros/química , Acrilamidas/química , Varredura Diferencial de Calorimetria , Campos Eletromagnéticos , Metais/química , Espectrofotometria Ultravioleta , Difração de Raios X
6.
J Comb Chem ; 4(1): 17-22, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11831878

RESUMO

A high-throughput screening system and methodology were developed for libraries of hydrogen (H(2)) producing catalytic materials. The system is based on the chemo-optical properties of WO(3), which give rise to reflectance changes in the presence of H(2). Pd-coated WO(3) sensors were synthesized and examined for their hydrogen sensitivity, wavelength-dependent reflectance, and performance in the presence of water vapor. For high-throughput screening, a polypropylene reactor block was designed and constructed to house 8 x 12 catalyst libraries deposited as thin films. When the library and reactor block are assembled together, 96 independent microreactor units are formed. A large-area Pd/WO(3) sensor film covers and seals all microreactors, forming a 96-element 2-D H(2) sensor array. As H(2) is produced differentially across the library, the reflectance changes of the Pd/WO(3) film are monitored by reflectivity sensors that scan the surface every 30 s. The time-dependent changes in reflectance indicate relative rates of H(2) production. A library of cathode electrocatalysts was synthesized from Ti, Pt, Ni, Au, Pd, Al, Ag, Ge, and mixtures thereof to demonstrate the H(2) high-throughput screening system. The results of the electrolytic screening are in agreement with expected literature trends: mixtures of Ni and samples containing Pt and Pd generated H(2) at the greatest rates, while Ge- and Ti-based materials were the least effective electrocatalysts. A mixture of 80% Al and 20% Pt was found to have the highest rate of H(2) production. This high-throughput screening system is applicable in a variety of catalytic screening applications where hydrogen is the desired product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...