Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(25): eaba2502, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596454

RESUMO

Cryptococcal meningoencephalitis (CM) is the major cause of infection-related neurological death, typically seen in immunocompromised patients. However, T cell-driven inflammatory response has been increasingly implicated in lethal central nervous system (CNS) immunopathology in human patients and murine models. Here, we report marked up-regulation of the chemokine receptor CXCR3 axis in human patients and mice with CM. CXCR3 deletion in mice improves survival, diminishes neurological deficits, and limits neuronal damage without suppressing fungal clearance. CD4+ T cell accumulation and TH1 skewing are reduced in the CNS but not spleens of infected CXCR3-/- mice. Adoptive transfer of WT, but not CXCR3-/- CD4+ T cells, into CXCR3-/- mice phenocopies the pathology of infected WT mice. Collectively, we found that CXCR3+CD4+ T cells drive lethal CNS pathology but are not required for fungal clearance during CM. The CXCR3 pathway shows potential as a therapeutic target or for biomarker discovery to limit CNS inflammatory damages.


Assuntos
Criptococose , Meningoencefalite , Receptores CXCR3 , Transferência Adotiva , Animais , Encéfalo/patologia , Sistema Nervoso Central , Criptococose/patologia , Cryptococcus , Humanos , Meningoencefalite/microbiologia , Meningoencefalite/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/genética
2.
Front Immunol ; 8: 1231, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033946

RESUMO

Macrophage receptor with collagenous structure (MARCO) contributes to fungal containment during the early/innate phase of cryptococcal infection; however, its role in adaptive antifungal immunity remains unknown. Using a murine model of cryptococcosis, we compared host adaptive immune responses in wild-type and MARCO-/- mice throughout an extended time course post-infection. Unlike in early infection, MARCO deficiency resulted in improved pulmonary fungal clearance and diminished cryptococcal dissemination during the efferent phase. Improved fungal control in the absence of MARCO expression was associated with enhanced hallmarks of protective Th1-immunity, including higher frequency of pulmonary TNF-α-producing T cells, increased cryptococcal-antigen-triggered IFN-γ and TNF-α production by splenocytes, and enhanced expression of M1 polarization genes by pulmonary macrophages. Concurrently, we found lower frequencies of IL-5- and IL-13-producing T cells in the lungs, impaired production of IL-4 and IL-10 by cryptococcal antigen-pulsed splenocytes, and diminished serum IgE, which were hallmarks of profoundly suppressed efferent Th2 responses in MARCO-deficient mice compared to WT mice. Mechanistically, we found that MARCO expression facilitated early accumulation and alternative activation of CD11b+ conventional DC (cDC) in the lung-associated lymph nodes (LALNs), which contributed to the progressive shift of the immune response from Th1 toward Th2 at the priming site (LALNs) and local infection site (lungs) during the efferent phase of cryptococcal infection. Taken together, our study shows that MARCO can be exploited by the fungal pathogen to promote accumulation and alternative activation of CD11b+ cDC in the LALN, which in turn alters Th1/Th2 balance to promote fungal persistence and dissemination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...