Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8: 16057, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28675166

RESUMO

Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted a priori.

2.
J Phys Chem Lett ; 7(3): 480-5, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26747698

RESUMO

Key descriptors in hydrogenation catalysis are the nature of the active sites for H2 activation and the adsorption strength of H atoms to the surface. Using atomically resolved model systems of dilute Pd-Au surface alloys and density functional theory calculations, we determine key aspects of H2 activation, diffusion, and desorption. Pd monomers in a Au(111) surface catalyze the dissociative adsorption of H2 at temperatures as low as 85 K, a process previously expected to require contiguous Pd sites. H atoms preside at the Pd sites and desorb at temperatures significantly lower than those from pure Pd (175 versus 310 K). This facile H2 activation and weak adsorption of H atom intermediates are key requirements for active and selective hydrogenations. We also demonstrate weak adsorption of CO, a common catalyst poison, which is sufficient to force H atoms to spill over from Pd to Au sites, as evidenced by low-temperature H2 desorption.

3.
Phys Chem Chem Phys ; 17(47): 31931-7, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26567846

RESUMO

Surface-bound molecular rotation can occur with the rotational axis either perpendicular (azimuthal) or parallel (altitudinal) to the surface. The majority of molecular rotor studies involve azimuthal rotors, whereas very few altitudinal rotors have been reported. In this work, altitudinal rotors are formed by means of coupling aryl halides through a surface-mediated Ullmann coupling reaction, producing a reaction state-dependent altitudinal molecular rotor/stator. All steps in the reaction on a Cu(111) surface are visualized by low-temperature scanning tunneling microscopy. The intermediate stage of the coupling reaction is a metal-organic complex consisting of two aryl groups attached to a single copper atom with the aryl rings angled away from the surface. This conformation leads to nearly unhindered rotational motion of ethyl groups at the para positions of the aryl rings. Rotational events of the ethyl group are both induced and quantified by electron tunneling current versus time measurements and are only observed for the intermediate structure of the Ullmann coupling reaction, not the starting material or finished product in which the ethyl groups are static. We perform an extensive set of inelastic electron tunneling driven rotation experiments that reveal that torsional motion around the ethyl group is stimulated by tunneling electrons in a one-electron process with an excitation energy threshold of 45 meV. This chemically tunable system offers an ideal platform for examining many fundamental aspects of the dynamics of chemically tunable molecular rotor and motors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...