Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; : 1-10, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021086

RESUMO

Chronic exposure to manganese compounds leads to accumulation of the manganese in the basal ganglia and hippocampus. High levels of manganese in these structures lead to oxidative stress, neuroinflammation, imbalance of brain neurotransmitters, and hyperactivation of calpains mediating neurotoxicity and causing motor and cognitive impairment. The purpose of this work was to study the effect of excess manganese chloride intake on rats' spatial memory and on dopamine-ß-hydroxylase (DßH) activity under conditions of calpain activity suppression. Rats were divided into 3 groups of 10 animals each. Group 1 received MnCl2 (30 days, 5 mg/kg/day, intranasally), group 2 received MnCl2 (30 days, 5 mg/kg/day, intranasally) and calpain inhibitor Cast (184-210) (30 days, 5 µg/kg/day, intranasally), and group 3 received sterile saline (30 days in a volume of 20 µl, intranasally). The spatial working memory was assessed using Morris water maze test. DßH activity was determined by HPLC. We have shown that in response to excessive intake of MnCl2, there was a development of cognitive impairments in rats, which was accompanied by a decrease in DßH activity in the hippocampus. The severity of cognitive impairment was reduced by inhibiting the activity of m-calpain. The protective effect of calpain inhibitors was achieved not through an effect on DßH activity. Thus, the development of therapeutic regimens for the treatment of manganism using dopaminomimetics and/or by inhibiting calpains, must be performed taking into account the manganese-induced decrease of DßH activity and the inability to influence this process with calpain inhibitors.

2.
Brain Res ; 1829: 148792, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325559

RESUMO

Temporal lobe epilepsy (TLE) development is associated with dysregulation of glutamatergic transmission in the hippocampus; however, detailed molecular mechanisms of pathological changes are still poorly understood. In the present study, we performed the complex analysis of glutamatergic system in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). Daily AGS stimulations (audiogenic kindling) were used to reproduce the dynamics of TLE development. Naïve KM rats were used as a control. After 14 AGS, at the stage of developing TLE, KM rats demonstrated significant upregulation of extracellular signal-regulated kinases (ERK) 1 and 2, cAMP response element-binding protein (CREB), and c-Fos in the hippocampus indicating activation of the hippocampal cells. These changes were accompanied with an increase in glutaminase and vesicular glutamate transporter (VGLUT) 2 suggesting the activation of glutamate production and loading into the synaptic vesicles. After 21 AGS, when TLE was fully-established, alterations were similar but more pronounced, with higher activation of glutaminase, increase in glutamate production, upregulation of VGLUT1 and 2, and Fos-related antigen 1 (Fra-1) along with c-Fos. Analysis of glutamate receptors showed variable changes. Thus, after 14 AGS, simultaneous increase in metabotropic glutamate receptor mGluR1 and decrease in ionotropic N-methyl-D-aspartate (NMDA) receptors could reflect compensatory anti-epileptic mechanism, while further kindling progression induced upregulation of ionotropic receptors, probably, contributing to the hippocampal epileptization. However, we revealed practically no alterations in the expression of synaptic proteins. Altogether, obtained results suggested that overactivation of glutamate production in the hippocampus strongly contributed to TLE development in KM rats.


Assuntos
Epilepsia Reflexa , Epilepsia do Lobo Temporal , Excitação Neurológica , Ratos , Animais , Glutaminase/metabolismo , Hipocampo/metabolismo , Epilepsia Reflexa/metabolismo , Excitação Neurológica/fisiologia , Epilepsia do Lobo Temporal/metabolismo , Predisposição Genética para Doença , Ácido Glutâmico/metabolismo , Convulsões/metabolismo , Estimulação Acústica
3.
Int J Dev Neurosci ; 83(8): 703-714, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655366

RESUMO

Epileptogenesis can be associated with altered genetic control of the GABAergic system. Here we analyzed Krushinsky-Molodkina (KM) rats genetically prone to audiogenic epilepsy. KM rats express fully formed audiogenic seizures (AGSs) not early, then they reach 3 months. At the age of 1-2 months, KM rats either do not express AGS or demonstrate an incomplete pattern of seizure. Such long-term development of AGS susceptibility makes KM rats an especially convenient model to investigate the mechanisms and dynamics of the development of inherited epilepsy. The analysis of the GABAergic system of the hippocampus of KM rats was done during postnatal development at the 15th, 60th, and 120th postnatal days. Wistar rats of corresponding ages were used as a control. In the hippocampus of KM pups, we observed a decrease in the expression of glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV), which points to a decrease in the activity of GABAergic neurons. Analysis of the 2-month-old KM rats showed an increase in GAD67 and PV expression while synapsin I and vesicular GABA transporter (VGAT) were decreased. In adult KM rats, the expression of GAD67, PV, and synapsin I was upregulated. Altogether, the obtained data indicate significant alterations in GABAergic transmission in the hippocampus of audiogenic KM rats during the first postnatal months.


Assuntos
Epilepsia Reflexa , Ratos , Animais , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Ratos Wistar , Sinapsinas/metabolismo , Convulsões , Hipocampo/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Estimulação Acústica
4.
Epilepsy Behav ; 134: 108846, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35849865

RESUMO

Audiogenic seizures (AGS) (audiogenic kindling) in genetically selected audiogenic rodents are a reliable model of temporal lobe epilepsy (TLE). Temporal lobe epilepsy is accompanied with neurodegeneration in the hippocampus, but how the cells die is not fully understood. We analyzed the dynamics and mechanisms of cell loss in the hippocampus of audiogenic Krushinsky-Molodkina (KM) rats during the development of TLE. Audiogenic kindling of different durations was carried out to reproduce TLE progression in KM rats. Behavioral analysis showed the development of post-tonic clonus, the main indicator of TLE, by the 14th AGS. The severity and duration of post-tonic clonus positively correlated with the increase in the number of AGS. Temporal lobe epilepsy development was accompanied with two peaks of cell loss. The first peak was detected after 7 AGS in the dentate gyrus (DG) granular layer and associated with activation of p53- and mitochondria-dependent apoptosis. After a 7-day rest period, activation of autophagy and restoration of cell number were revealed. The second peak occurred after 14 AGS, affected both granular and hilar mossy cells and persisted further after 21 AGS, but no compensation was observed. Thus, activation of autophagy probably plays a neuroprotective role and supports survival of hippocampal cells at the beginning of epileptogenesis, but exacerbation of limbic seizures during TLE development causes irreversible neurodegeneration.


Assuntos
Epilepsia Reflexa , Epilepsia do Lobo Temporal , Excitação Neurológica , Estimulação Acústica , Animais , Hipocampo , Ratos , Convulsões
5.
Metab Brain Dis ; 36(7): 1917-1928, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34014442

RESUMO

Some mechanisms of neuronal degeneration in endotoxinemia are already well described, but need to be detailed. In this study, we tested the effect of a single intraperitoneal injection of a LPS sub-septic dose (1 mg/kg of animal weight) on calpain activity in the striatum and hippocampus. We showed, that in the hippocampus the day after LPS administration an increase in production of IL-1ß and TNF-α mRNA, followed by elevated mRNA expression and activity of µ- and m-calpains without signs of microglia activation is observed. In striatal cells, the day after LPS injection an increase in expression of IL-1ß, TNF-α, IBA-1, m-calpain and calpastatin mRNA is revealed, which only intensifies over time. The elicited changes are accompanied by a decrease in motor behavior, which can be considered as a sign of sickness behavior. In the hippocampus, 180 days after LPS administration expression of TNF-α, content and activity of µ-calpain are increased. In the striatum, elevation in expression of TNF-α, IBA-1, µ- and m-calpain mRNA, with hyperactivation of only m-calpain, is observed. Significantly reduced motor activity can be a consequence of LPS-induced neuronal death. A long-lasting endotoxin activates microglia that damage neurons via proinflammation cytokines and calpain hyperactivation. The endotoxin hypothesis of neurodegeneration is unproven, but if correct, then neurodegeneration may be reduced by decreasing endotoxin-induced neuroinflammation and m-calpain hyperactivation. Therefore, the drugs, that decrease endotoxin-induced neuroinflammation and differently inhibit µ- or m-calpain, can be used to prevent or reduce the severity of neurodegeneration.


Assuntos
Calpaína , Endotoxinas , Animais , Calpaína/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Hipocampo/metabolismo , Injeções Intraperitoneais , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Ratos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...